
Approximate Dynamic Programming with Recursive

Preferences∗

Quentin Batista†

This Draft: June, 2021 – Link to Latest Version

Abstract

This paper builds on the theory of Ren and Stachurski (2020) to study a value function iteration

algorithm that uses isotone and convex/concave function approximation operators. Conditions

that ensure the stability of the algorithm are developed and applied to multiple popular schemes

used in economics such as piecewise continuous linear interpolation. An experimental comparison

of various techniques suggests that variation diminishing spline approximation is a powerful and

versatile tool for solving models with recursive preferences using fitted value function iteration. We

also show that introducing momentum in the algorithm can significantly speed-up convergence.

1 Introduction

Economic and financial data contain important features that puzzle economists. To better account for

these features, many have recently departed from standard additively separable preferences in favor of

so-called recursive preferences. For instance, economists have had difficulty explaining the magnitude

of the outperformance of stocks relative to Treasury bills. To justify this equity premium, Bansal

and Yaron (2004) model consumption and dividend growth rates in conjunction with Epstein and Zin

(1989) preferences. Besides, the Ellsberg paradox refers to the contradiction between predictions of
∗I would like to thank Michihiro Kandori, Thomas J. Sargent, John Stachurski, Kyohei Okumura, and Daisuke Oyama

for helpful comments and suggestions.
†University of Tokyo and University of Chicago. Email: qbatista@uchicago.edu

1

subjective expected utility theory and experimental results in settings of choice under uncertainty. To

confront this issue, Klibanoff, Marinacci, and Mukerji (2005) propose a model of decision making that

can explicitly reflect circumstances where a decision-maker faces ambiguity. Finally, policymakers,

aware that their economic models are inherently flawed, need to confront significant uncertainty when

making important decisions. Hansen and Sargent (2011) explain how this uncertainty can incorporated

into economic modeling using multiplier preferences.

Solving models featuring recursive preferences has proved to be challenging. In many instances, it is

not possible to characterize the solution of these models analytically, and therefore, researchers rely on

numerical methods. Recent work has shown that some of the techniques employed to solve these models

can be highly inaccurate. This is particularly problematic if the model is then evaluated by its ability

to match the data. For example, long-run risk models in the tradition of Bansal and Yaron (2004) are

typically solved using log-linearization techniques such as the ubiquitous Campbell and Shiller (1988)

approximation. Unfortunately, when coupled with important nonlinear dynamics, these methods can

lead to economically significant errors as recent studies such as Pohl, Schmedders, and Wilms (2018)

illustrate. Besides, Lorenz, Schmedders, and Schumacher (2020) show that the quantitative results

obtained by many models attempting to explain the "variance risk premium" (the premium that

investors pay to hedge against fluctuations in volatility) is driven almost exclusively by inaccurate

measures of conditional volatility. Aldrich and Kung (2020) show that the choice of solution method

can, in some circumstances, have critical implications for asset prices and welfare costs in production-

based asset pricing models. Finally, even with additively separable preferences, Dou et al. (2019)

show that linearization methods can yield biased impulse responses in canonical macro-finance models

with important non-linear dynamics. Such studies demonstrate a need for reliable, well-understood

numerical methods.

This paper addresses this issue by studying conditions that preserve the geometric stability of

fitted value function iteration algorithms; a class of global, non-linear solution methods that is well-

known for models featuring additively separable preferences. We show that approximation operators

that are isotone, convex/concave, and satisfy some boundary conditions preserve the stability of value

function iteration by building on the abstract dynamic programming theory recently developed by

2

Ren and Stachurski (2018) and Ren and Stachurski (2020). While they show that, theoretically, the

value function iteration algorithm converges to the optimal value function, in practice, solving dynamic

programs often requires using approximation techniques. Objects such as continuous domains typically

cannot be represented exactly on a computer, and as a result, functions, integrals, and the solution

of optimization problems need to be approximated. The interaction between numerical error due

to approximation and the value function algorithm is known to be delicate, and can lead to failure

of the algorithm to converge, or even, divergence. We show that if one uses an averager function

approximation scheme defined following Gordon (1995) or certain types of spline approximation, the

stability of the Bellman operator is preserved.

With our theory in hand, we experimentally compare a selection of popular approximation schemes

according to three criteria: (i) stability of the scheme, (ii) speed of convergence and, (iii) smoothness

of the derivatives of the function approximation. Based on these criteria, variation diminishing spline

approximation emerges as a tool of choice for solving dynamic programs with recursive preferences

using a fitted value function iteration algorithm.

For cases with additively separable rewards, this problem has been studied by various authors.

Tsitsiklis and Van Roy (1996) and Gordon (1995) provide examples where function approximation

leads to instability. Stachurski (2008) shows how nonexpansive function approximation operators can

preserve stability. The key feature of these operators is that they preserve the contractivity of the

Bellman operator. Unfortunately, the contractivity condition fails to hold for many models with non-

separable rewards, and as such, this line of reasoning cannot be applied. In contrast, Cai and Judd

(2013) suggest using so-called shape-preserving techniques, that is, approximation techniques that

preserve properties of the underlying function such as monotonicity or convexity. Pál and Stachurski

(2013) study a randomized fitted value function iteration algorithm that features both function and

integral approximation that has guaranteed convergence properties, and derive error bounds. To

the best of our knowledge, little attention has been devoted to the impact of approximately solving

optimization problems in the literature.

Section 2 provides preliminary notation. Section 3 outlines the framework introduced in Ren and

Stachurski (2020). Section 4 develops conditions under which a value function iteration algorithm with

3

function approximation is stable. Section 5 presents numerical experiments, and section 6 concludes.

2 Preliminaries

We adopt the notation and definitions from Ren and Stachurski (2020).

Let RX be all functions from some metric space X to R. Let bX be the bounded Borel measurable

functions in RX and let bcX be the continuous functions in bX. Let ‖·‖ denote the supremum norm

on bX. For f and g in RX , the statement f 6 g means f (x) 6 g (x) for all x ∈ X while f � g means

that f 6 g − ε for some positive constant ε.

Definition (Order Interval). Given a, b ∈ F ⊂ bX, the order interval I ≡ [a, b] is all f in F with

a 6 f 6 b.

Let I = [a, b] be an order interval in bcX.

Definition (Geometric Stability). We call S : I → I geometrically stable on I if S has a unique fixed

point v∗ ∈ I, and we can find constants λ ∈ (0, 1) and K ∈ R such that ‖Snv − v∗‖ 6 λnK for all

n ∈ N and all v ∈ I.

Definition (Isotonicity). S is called isotone on I if Sv 6 Sv′ whenever v, v′ ∈ X with v 6 v′.

Definition (Convexity and Concavity). S is called convex on I if S (λv + (1− λ) v′) 6 λSv +

(1− λ)Sv′ whenever v, v′ ∈ I and 0 6 λ 6 1. S is called concave if −S is convex.

The following theorem by Du (1990) is taken for granted.

Theorem 1 (Du). Let S : I → I be isotone. If either (i) S is convex on I and Sb � b, or (ii) S is

concave on I and Sa� a, then S is geometrically stable on I.

3 Abstract MDP Model

Let X and A be metric spaces, called the state and action space respectively. Let Γ be a correspondence

from X to A called the feasible correspondence and let G ≡ {(x, a) ∈ X ×A : a ∈ Γ (x)} be the feasible

4

state-action pairs. A state-action aggregator H maps feasible state-action pairs (x, a) and functions

v ∈ bX into real values H (x, a, v).

Fix w1, w2 in bcX and set V ≡ [w1, w2] in bX. Let C be the continuous functions in V. We make

some basic assumptions that will be assumed in every case:

(A1) The feasible correspondence Γ is nonempty, compact valued and continuous

(A2) The map (x, a) → H (x, a, v) is Borel measurable on G whenever v ∈ V and continuous on G

whenever v ∈ C

(A3) The state-action aggregator satisfies

v 6 v′ =⇒ H (x, a, v) 6 H (x, a, v′) for all (x, a) ∈ G

(A4) The functions w1 and w2 satisfy

w1 (x) 6 H (x, a, v) and H (x, a, v) 6 w2 (x) for all (x, a) ∈ G

Definition (Value Convexity and Value Concavity). H is called value-convex if, for all (x, a) ∈ G,

λ ∈ [0, 1] and v, w ∈ V, we have:

H (x, a, λv + (1− λ)w) 6 λH (x, a, v) + (1− λ)H (x, a, w)

H is called value-concave if −H is value-convex.

The following assumption will be used in the maximization case.

Assumption 1 (Convex Program). H is value-convex and there exists ε > 0 such that H (x, a, w2) 6

w2 (x)− ε for all (x, a) ∈ G.

The following assumption will be used in the minimization case.

Assumption 2 (Concave Program). H is value-concave and there exists ε > 0 such that H (x, a, w2) >

w1 (x) + ε for all (x, a) ∈ G.

Let Σ be all maps from X to A such that each σ ∈ Σ is Borel measurable and satisfies σ (x) ∈ Γ (x)

for all x ∈ X. For each σ ∈ Σ, we define the σ-value operator Tσ on V by

5

Tσv(x) := H(x, σ(x), v) (x ∈ X, v ∈ V)

Ren and Stachurski (2020) show that Tσ is well-defined. A fixed point vσ ∈ V of Tσ is called a

σ-value function.

Maximization

With assumption 1 in force, a policy σ∗ ∈ Σ is called optimal if vσ∗ (x) > vσ (x) for all σ ∈ Σ and all

x ∈ X. The value function is defined at x ∈ X by v∗ (x) = supσ∈Σ vσ (x).

A function v ∈ V is said to satisfy the Bellman equation if

v(x) = maxa∈Γ(x)H(x, a, v) for all x ∈ X

Given v ∈ C, a policy σ ∈ Σ is called v-greedy if σ ∈ argmaxa∈Γ(x)H (x, a, v) for all x ∈ X.

The Bellman operator T is a map sending v ∈ C into

Tv (x) = max
a∈Γ(x)

H (x, a, v)

Minimization

With assumption 2 in force, and, in the minimization setting, a policy σ∗ ∈ Γ is called optimal if

vσ∗ (x) 6 vσ (x) for all σ ∈ Σ and x ∈ X. The value function is defined by vσ∗ (x) = infσ∈Σ vσ (x).

A function v ∈ V is said to satisfy the Bellman equation if v(x) = mina∈Γ(x)H(x, a, v) for all x ∈ X.

A policy is called v-greedy if it satisfies σ(x) ∈ argmina∈Γ(x)H(x, a, v) for all x ∈ X. The Bellman

operator is defined by Tv(x) = mina∈Γ(x)H(x, a, v).

We are now ready to state part of the main result of Ren and Stachurski (2020).

Theorem 2 (Ren and Stachurski). If assumption 1 or assumption 2 holds, then

(a) The Bellman equation has exactly one solution in C and that solution is v∗.

(b) The Bellman operator is geometrically stable on C.

(c) A policy σ ∈ Σ is optimal if and only if it is v∗-greedy.

(d) At least one optimal policy exists.

6

4 Value Function Iteration Algorithm with Function Approxi-

mation

Theorem 2 establishes the theoretical convergence of the value function iteration algorithm. In this

section, we study value function iteration with function approximation. We proceed in three steps.

First, we characterize the derivation of an approximate Bellman operator from an original Bellman

operator. To do so, we introduce an approximation operator A, representing the function approxima-

tion technique, together with a composition operation such that the approximate Bellman operator T̂

satisfies T̂ = A◦T . Then, we show that the convergence properties of T can be preserved through this

construction. Finally, we describe empirically relevant classes of stable approximation operators.

Throughout our discussion, an implicit assumption is that maximization problems can be solved

exactly and that integrals can be computed exactly.1 Our main tool is the following theorem.

Theorem 3. Let A be an operator mapping C to itself. Let T̂ = A ◦ T . Suppose that A is isotone.

Maximization case: suppose that assumption 1 holds and that A is convex and satisfies the following:

∀f ∈ C, f � w2 =⇒ Af � w2

Minimization case: suppose that assumption 2 holds and that A is concave and satisfies the following:

∀f ∈ C, f � w1 =⇒ Af � w1

Then, T̂ is geometrically stable on C.

Proof. Fix v, v′ ∈ C. Ren and Stachurski (2020) establish that T is isotone and convex under assump-

tion 1 and concave under assumption 2 on C. First, note that T̂ is well-defined by Berge’s theorem of

the maximum, which implies that Tv ∈ C for all v ∈ C. We establish that Du’s theorem applies to T̂ .

Step 1: T̂ is isotone.

Suppose that v 6 v′. Then, Tv 6 Tv′ holds by the isotonicity of T and ATv 6 ATv′ holds by the
1Approximation of integrals typically do not affect stability, but the choice of maximization routine can sometimes

break it.

7

isotonicity of A. Therefore, T̂ v 6 T̂ v′.

Step 2.1 (Maximization case): T̂ is convex.

Suppose that the maximization case assumption holds. Let λ ∈ [0, 1]. We have:

T̂ (λv + (1− λ) v′) = A (T (λv + (1− λ) v′))

6 A (λTv + (1− λ)Tv′)

6 λATv + (1− λ)ATv′

= λT̂ v + (1− λ) T̂ v′

The first and last equality hold by definition. The first inequality holds by the convexity of T and

the isotonicity of A. The second inequality holds by the convexity of A.

Step 2.2 (Maximization case): T̂w2 � w2

Suppose that the maximization case assumption holds. The proof of lemma 5.1 in Ren and Stachurski

(2020) shows that Tw2 � w2. Therefore, T̂w2 � w2 follows immediately by assumption.

Step 3.1 (Minimization case): T̂ is concave.

Suppose that the minimization case assumption holds. The concavity of T̂ can be obtained by making

appropriate replacements in step 2.1.

Step 3.2 (Minimization case): T̂w1 � w1

Suppose that the minimization case assumption holds. The proof of lemma 5.2 in Ren and Stachurski

(2020) shows that Tw1 � w1. Therefore, T̂w1 � w1 follows immediately by assumption.

Algorithm 1, which we call the fitted value function iteration algorithm, is a natural extension

to value function iteration in the presence of function approximation. Theorem 3 guarantees the

convergence of this algorithm.

We now proceed to describing classes of stable approximation techniques. Following Gordon (1995),

we define a class of averager approximation schemes appropriate for our context and prove stability.

8

Algorithm 1 Fitted Value Function Iteration
Input: An approximation operator A

1: Initialize v0, T̂ = A ◦ T , ∆ = 1 and i = 0.
2: while ∆ > TOL (a small positive number) do
3: vi ← T̂ vi−1

4: ∆← ‖vi − vi−1‖
5: i← i+ 1

6: Compute a vi−1-greedy policy π.

Definition (Averager). The operator A : C → C is called an averager if Af (x) =
∑m
j=1 βj (x) f (xj)

such that, for all x ∈ X,
∑m
j=1 βj (x) = 1 and βj (x) > 0 for all 1 6 j 6 m.

For convenience, we assume below that w1 and w2 are constant functions. For given bounds

w1, w2 ∈ bcX, constant bounds can be constructed by taking the supremum or infinimum of w1 and

w2 respectively over X.

Theorem 4. Suppose that A is an averager. If assumption 1 (maximization case) or assumption 2

(minimization case) holds, then T̂ ≡ A ◦ T is geometrically stable on C.

Proof. We show that theorem 3 is applicable to A. The isotonicity, convexity, and concavity of A

follow from the linearity of Af (x) in {f (xj)}mj=1 for all f ∈ C and x ∈ X.

We now show that for all f ∈ C, f � w2 implies Af � w2. Fix any f ∈ C and x ∈ X such that

f 6 w2 − ε for some ε > 0. Then,

Af (x) =

m∑
j=1

βj (x) f (xj)

6 max
i
f (xi)

m∑
j=1

βj (x)

6 w2

(
arg max

i
f (xi)

) m∑
j=1

βj (x)− ε

= w2 (x)− ε

The first equality holds by definition. The first inequality holds because βj (x) > 0 for all 0 6 j 6 m.

9

The second inequality holds by assumption. The second equality holds by the assumption that w2 is

a constant function.

By the arbitrariness of x, Af 6 w2 − ε holds. A similar argument can be used to show that

∀f ∈ C, f � w1 =⇒ Af � w1 by making appropriate modifications.

Remark. Ren and Stachurski (2018) use constant functions w1 and w2 for applications to risk sen-

sitive, Epstein-Zin preferences, and the recursive smooth ambiguity model proposed by Ju and Miao

(2012).

We now provide an example of an approximation scheme that belongs to the class of averagers.

Example (Kernel averagers). Kernel-based approximators can be represented by an expression of the

form

Kv (x) =

∑k
i=1Kh (xi − x) v (xi)∑k

i=1Kh (xi − x)

where Kh : X→ R is a nonnegative mapping for a sequence of points {xi}ki=1 ⊂ X. This represen-

tation clearly reveals that theorem 4 applies to this scheme.

We now develop conditions that apply to particular spline functions. We follow the treatment of

Lyche and Morken (2018). For simplicity, we assume X = R.

Definition (B-spline). Let d be a nonnegative integer and let t = {tj}n+d+1
j=1 be a nondecreasing

sequence of real numbers of length at least d+2. If 1 ≤ j ≤ n, the j-th B-spline of degree d with knots

t is defined by

Bj,d,t (x) =
x− tj
tj+d − tj

Bj,d−1,t (x) +
tj+1+d − x
tj+1+d − tj+1

Bj+1,d−1,t (x)

for all real numbers x, starting with

10

Bj,0,t (x) =

1 if tj 6 x 6 tj+1

0 otherwise

Lemma 1 (Nonnegativity of B-Splines). Let d be a nonnegative polynomial degree and let t =

{tj}n+d+1
j=1 be a knot sequence. Then, Bj,d,t (x) > 0 for all x ∈ X.

Proof. Lemma 2.3 in Lyche and Morken (2018) establishes that B-splines on t have the following

properties:

1. Local support: x /∈ [tj , tj+d+1) =⇒ Bj,d,t (x) = 0

2. Positivity: x ∈ (tj , tj+d+1) =⇒ Bj,d,t (x) > 0

It remains to show that Bj,d,t (tj) > 0. Using the local support property, we have Bj+1,d−1,t (tj) = 0.

Therefore, the conclusion follows.

Definition (Spline functions). Let t = {tj}n+d+1
j=1 be a nondecreasing sequence of real numbers of

length at least d + 2. The linear space of all linear combinations of B-splines is the spline space Sd,t

defined by:

Sd,t =

n∑
j=1

cjBj,d,t : cj ∈ R, 1 6 j 6 n

An element f in Sd,t is called a spline function.

To develop our result for spline functions, we will make use of the following lemma:

Lemma 2. For all y and y′ in Rn and A in Rn×n, y > y′ implies Ay > Ay′ if and only if A is

nonnegative.

Proof. Fix A in Rn×n.

Step 1: if A is nonnegative, then, for all y and y′ in Rn, y > y′ implies Ay > Ay′

Suppose that A is nonnegative and fix y and y′ in Rn such that y > y′. Then, y − y′ > 0. Therefore,

A (y − y′) > 0 by the nonnegativity of A, implying Ay > Ay′.

Step 2: if, for all y and y′ in Rn, y > y′ implies Ay > Ay′, then A is nonnegative

We proceed by contraposition. Suppose that A is not nonnegative. Then, there exists 1 6 i, j 6 n

11

such that Aij < 0. Let ej denote a unit vector whose jth row is equal to 1. Then, Aej > 0 does not

hold despite ej > 0.

We now state a result applicable to a class of approximation techniques based on spline functions.

Theorem 5. For some function f , let there be given data {xi}mi=1 and let yi = f (xi). For some

matrix W , let S be an operator satisfying:

(Sf) (x) =

m∑
j=1

cjBj,d,t (x)

where c =

c1
...

cm

 = W

y1

...

ym

 = Wy

such that w1 (x) < cj < w2 (x) for all 1 6 j 6 m and x ∈ X if w1 � f � w2.

Then, T̂ = S ◦ T is geometrically stable on C if W is nonnegative and assumption 1 (maximization

case) or 2 (minimization case) holds.

Proof. We show that the conditions of theorem 3 apply.

Step 1: S is isotone.

By lemma 1, Bj,d,t (x) > 0 for all x. Suppose that f > f ′ for some function f and f ′. Then, we

have y > y′ by definition. Let c and c′ denote the vector of coefficients associated with Sf and Sf ′

respectively. Then, Sf > Sf ′ if c > c′. By lemma 2, this holds if W is nonnegative.

Step 2: S is convex and concave.

This follows from the linearity of c in y.

Step 3: w1 � f � w2 implies w1 � Sf � w2

From lemma 5.28 in Lyche and Morken (2018), we have minj cj 6 Sf 6 maxj cj . Therefore, w1 �

Sf � w2 follows by assumption as required.

Example (Continuous piecewise linear interpolation). Let {xi, yi}mi=1 be a set of data points with

12

xi < xi+1 for i = 1, . . . ,m − 1 and t = (x1, x1, x2, x3, . . . , xm−1, xm, xm). For a given function f ,

continuous piecewise linear interpolation satisfies:

(Lf) (x) =

m∑
i=1

yiBi,1,t (x)

Notice that W = I, and therefore, it is a nonnegative matrix. The boundary conditions of theo-

rem follow from assumption and lemma 5.28 in Lyche and Morken (2018). Therefore, T̂ = L ◦ T is

geometrically stable on C.

Example (Variation diminishing spline approximation). Let f be a continuous function on the interval

[a, b], let d be a positive integer, and let τ = (τ1, . . . , τn+d+1) be a knot vector such that τd+1 = a and

τn+1 = b. The spline is given by

(V f) (x) =

n∑
j=1

f
(
τ∗j
)
Bi,d,t (x)

τ∗j =
τj+1 + · · ·+ τj+d

d

Once again, we have W = I. The boundary conditions of theorem hold by proposition 5.29 in

Lyche and Morken (2018)2. Hence, T̂ = V ◦ T is geometrically stable on C.

Remark. These last two examples can also be shown to belong to the class of averagers.

Another class of popular interpolation techniques rely on orthogonal polynomials. We show that

Chebyshev polynomials fail to produce isotone approximation operators in general, which is one the

key properties that our theory exploits to establish stability. We follow the exposition of Judd (1998).

Example (Chebyshev Polynomials). Let X = [−1, 1]. For a function f : X → R, approximation with

Chebyshev polynomials of order n is defined as follows:

Cnf (x) =

n∑
i=0

aiTi (x)

2The proposition guarantees that ∀x ∈ R : miny f (y) 6 (V f) (x) 6 maxy f (y). Therefore, we have ∀x ∈ R : w1 (x)�
(V f) (x)� w2 (x).

13

where:

T0 (x) = 1

T1 (x) = x

Tn+1 (x) = 2xTn (x)− Tn−1 (x)

Let f (x) = |x| and g (x) = x. Then, g 6 f holds on [−1, 1] and:

C1f (x) =
2

π

C1g (x) = x

Therefore, C1g (1) > C1f (1), implying that there exists n such that Cn is not isotone. We conjec-

ture that this statement is true for all n.

5 Numerical Experiments

5.1 Comparison of approximation techniques

Which approximation technique should one use in practice? In this section, we carry out a numerical

experiment to provide an answer to this question using three selection criteria: (i) stability of the

scheme, (ii) speed of convergence and, (iii) smoothness of the derivatives of the approximation. We

consider a neoclassical growth model modified to feature robust preferences. The model is described

by the following set of equations:

14

v (x) = max
06k6x

{
log (x− k) +

β

θ
logE [exp (θv (x′))]

}
subject to x′ = zkα

log z ∼ N (µ, σ)

We solve this model using algorithm 1 with seven different approximation schemes: Chebyshev

polynomials, piecewise continuous linear interpolation, two kernel smoothers with Gaussian radial

basis functions with smoothing parameters 0.25 and 0.75 respectively, variation diminishing spline

approximation (VDSA), Akima interpolation, and monotonic cubic splines. Numerical integration is

done using Gaussian quadrature, and Brent’s method is used for numerical optimization. The initial

condition for the guess of the value function is the constant zero function. We calibrate the parameters

as follows: θ = 10, β = 0.95, α = 0.33, µ = 0, and σ = 0.25. Table 1 shows the supremum norm

of the guess of the value function at successive iterates of the algorithm. Stopping criteria for the

algorithm are typically functions of this distance, and as such, we measure speed by the reciprocal

of the number of iterations needed to achieve a fixed distance level. Under this definition of speed,

piecewise linear interpolation, VDSA, Akima interpolation, and monotonic cubic spline approximation

are approximately equally fast.

Out of these four approximation techniques, our theory predicts that two are always stable when

only function approximation is used: piecewise linear interpolation and variation diminishing spline

approximation. Monotone cubic approximation preserves monotonicity of the underlying function that

Cai and Judd (2013) argue is important for preserving stability, but it is not isotone. It may be the

case that shape-preservation is in fact a sufficient condition for stability, but our theory does not allow

us to answer this question.

An advantage of VDSA over piecewise linear interpolation is that the smoothness of the approximate

function depends on the choice of spline degree. Optimization routines that exploit derivatives tend to

work better with smoother functions, and as such, VDSA appears to be the best technique among the

ones that we have used for this experiment. Hence, in the absence of additional information to guide

15

the selection, VSDA seems to be a good default technique.3

This example also illustrates that the instability issue with Chebyshev polynomials that is well-

known in the case of additively separable preferences also afflicts the case of recursive preferences.

Pál and Stachurski (2013) provide an example in a closely related model. In their case, the distance

between successive iterates appears to go to infinity while it seems to get stuck at a high level of error

in our case.

5.2 Accelerating convergence with momentum

Caldara et al. (2012) report that value function iteration algorithms can be slow compared to other

solution methods for models with Epstein-Zin preferences and stochastic volatility. In this section, we

describe a simple modification of algorithm 1 that, in some cases, can speed-up convergence by close

to two orders of magnitude. This modification exploits a link between value function iteration and

gradient descent to introduce momentum in the algorithm. It has recently been studied in the context

of Markov Decision Processes with additively separable rewards by Goyal and Grand-Clement (2019).

Besides, Vieillard et al. (2019) apply a similar idea to reinforcement learning problems. Algorithm 2

describes the modification that interests us.

Algorithm 2 Fitted Value Function Iteration with Momentum
Input: An approximation operator A

1: Initialize v0, T̂ = A ◦ T , ∆ = 1 and i = 0.
2: while ∆ > TOL (a small positive number) do
3: vi ← (1− β) vi−1 + βT̂ vi−1 + α (vi−1 − vi−2)
4: ∆← ‖vi − vi−1‖
5: i← i+ 1

6: Compute a vi−1-greedy policy π.

Note that a fixed point under the update rule implied by algorithm 1 is also a fixed point under

the update rule implied by algorithm 2 for any values of α and β.

For our experiment, we consider the model of Bansal and Yaron (2004) described by the following

system of equations:
3Naturally, we cannot claim that VSDA is uniformly superior to other schemes. For instance, if the researcher knows

that the value function is piecewise linear, then it would probably be more sensible to use piecewise linear interpolation.

16

Table 1: Distance between successive iterates of fitted value iteration
Iterate Chebyshev Piecewise linear Kernel (0.25) Kernel (0.75) VDSA Akima Mono. Cubic

1 1.479531 3.314650 5.291498 6.836801 3.367189 3.314650 3.314650
2 1.021866 1.220389 0.653361 1.145836 1.221344 1.218222 1.218264
3 0.766832 0.541841 0.615677 1.058076 0.542533 0.542523 0.542597
4 0.756796 0.435744 0.584833 0.996234 0.435801 0.435745 0.435745
5 0.676985 0.413956 0.555585 0.944474 0.414165 0.413955 0.413955
6 0.663027 0.393257 0.527805 0.896857 0.393397 0.393256 0.393257
7 0.822923 0.373594 0.501414 0.851936 0.373711 0.373594 0.373594
8 0.606802 0.354914 0.476344 0.809323 0.355001 0.354913 0.354914
9 0.590811 0.337168 0.452527 0.768854 0.337250 0.337168 0.337168
10 0.547549 0.320310 0.429900 0.730411 0.320383 0.320310 0.320309
11 0.766856 0.304294 0.408405 0.693890 0.304363 0.304294 0.304294
12 0.516323 0.289080 0.387985 0.659196 0.289145 0.289079 0.289079
13 0.511602 0.274626 0.368586 0.626236 0.274688 0.274626 0.274625
14 0.472070 0.260894 0.350156 0.594924 0.260954 0.260894 0.260894
15 0.686196 0.247850 0.332649 0.565178 0.247906 0.247850 0.247850
16 0.437263 0.235457 0.316016 0.536919 0.235510 0.235457 0.235457
17 0.440293 0.223684 0.300215 0.510073 0.223734 0.223684 0.223684
18 0.407225 0.212500 0.285205 0.484569 0.212548 0.212500 0.212500
19 0.605496 0.201875 0.270944 0.460341 0.201920 0.201875 0.201875
20 0.385200 0.191781 0.257397 0.437324 0.191824 0.191781 0.191781
21 0.389553 0.182192 0.244527 0.415458 0.182233 0.182192 0.182192
22 0.364842 0.173083 0.232301 0.394685 0.173121 0.173082 0.173083
23 0.575397 0.164428 0.220686 0.374951 0.164465 0.164428 0.164428
24 0.340736 0.156207 0.209652 0.356203 0.156242 0.156207 0.156207
25 0.370169 0.148397 0.199169 0.338393 0.148430 0.148397 0.148397
26 0.331378 0.140977 0.189211 0.321473 0.141008 0.140977 0.140977
27 0.526831 0.133928 0.179750 0.305400 0.133958 0.133928 0.133928
28 0.303088 0.127232 0.170763 0.290130 0.127260 0.127232 0.127231
29 0.318671 0.120870 0.162224 0.275623 0.120897 0.120870 0.120870
30 0.289859 0.114827 0.154113 0.261842 0.114852 0.114827 0.114827
31 0.498890 0.109085 0.146408 0.248750 0.109110 0.109086 0.109085
32 0.268979 0.103631 0.139087 0.236312 0.103654 0.103631 0.103631
33 0.302569 0.098449 0.132133 0.224497 0.098471 0.098449 0.098450
34 0.266996 0.093527 0.125526 0.213272 0.093548 0.093527 0.093527
35 0.465479 0.088851 0.119250 0.202608 0.088870 0.088851 0.088851
36 0.244831 0.084408 0.113287 0.192478 0.084427 0.084408 0.084408
37 0.263333 0.080188 0.107623 0.182854 0.080206 0.080188 0.080188
38 0.240636 0.076178 0.102242 0.173711 0.076195 0.076179 0.076178
39 0.448945 0.072369 0.097130 0.165026 0.072386 0.072369 0.072369
40 0.221532 0.068751 0.092273 0.156774 0.068766 0.068751 0.068751

17

Vt =
(

(1− δ)C1−ρ
t + δR (Vt+1)

1−ρ
) 1

1−ρ

R (Vt) = E
[
V 1−γ
t

] 1
1−γ

subject to xt+1 = ρxt + φeσtet+1

log

(
Ct+1

Ct

)
= µ+ xt + σtηt+1

log

(
Dt+1

Dt

)
= µ+ φxt + φdσtut+1

σ2
t+1 = σ2 + ν1

(
σ2
t − σ2

)
+ σwwt+1

et+1, ηt+1, ut+1, wt+1 ∼ N (0, 1)

We solve this model on a two-dimensional uniform grid with ten points in each dimension. We

use continuous piecewise linear interpolation as our function approximation technique. For numerical

integration, we use Gauss-Hermite quadrature with ten sample points. The initial condition for the

guess of the value function is the constant zero function. We set our stopping criterion TOL equal to

10−10. For parameter values, we use the original calibration of Bansal and Yaron (2004).

Can algorithm 2 significantly outperform algorithm 1 in terms of speed? We investigate this

question experimentally by numerically estimating optimal values for α and β for a range of discount

factor values. These parameter values are optimal in the sense that they maximize the speed-up

magnitude defined as the base 10 logarithm of the ratio of number of iterations needed to satisfy the

stopping criterion.4 Figure 1 plots our results.5 For high values of the discount factor, the estimated

speed-up magnitude approaches 2. We also plot the number of iterations needed to achieve convergence

using algorithm 1. A comparison between the two plots reveal that algorithm 2 is most powerful for

solving difficult problems. Specifically, as the number of iterations needed to achieve convergence

increases, the estimated optimal speed-up magnitude increases, thereby significantly mitigating the
4Formally, letting iα,β denote the number of iterations using parameter values α and β, we estimate

maxα,β

(
− log10

(
iα,β
i0,1

))
.

5To check the validity of our results, we also check that the estimated value function using algorithm 1 and 2 are very
close to each other.

18

Figure 1: Estimated optimal speed-up magnitude as a function of the discount factor.

explosive increase in the number of iterations needed to satisfy the stopping criterion.

While techniques such as parallelization allow to reduce the time that a given iteration takes, by

definition, it cannot help accelerate the part of the value function algorithm that is not parallelizable. In

contrast, algorithm 2 operates by reducing the total number of iterations needed to reach a stopping

criterion. Given that these two acceleration techniques operate along orthogonal dimensions, our

experiment suggests that they can be combined effectively.

Unfortunately, our strategy for estimating optimal parameters is not practical because it requires

solving the dynamic program of interest multiple times. As such, for the algorithm to be useful in

practice, we need to devise a computational strategy such that the computational cost of using the

strategy is lower than that of using the standard algorithm. Ideally, we would want to derive the

optimal parameters analytically. We leave this problem to future work.

Nevertheless, we suggest heuristic strategies for choosing parameters. Given that that algorithm

2 is equivalent to algorithm 1 when β = 1 and α = 0, a conservative strategy is to pick a value of β

close to 1 and a value of α close to 0. Figure 2 plots the speed-up magnitude for a range of parameters

values. This figure shows that one can obtain reasonable speed-ups even for very conservative choices

of parameter values.

A more ambitious strategy involves estimating values of α and β that maximize the speed of

19

Figure 2: Speed-up magnitude for different values of α and β.

20

convergence of the algorithm using homotopy methods. We first estimate optimal values for α and β

numerically for parameter values that make solving the dynamic program computationally cheap (e.g.

a low discount factor or a small number of grid points). We can then use our estimated parameters to

solve harder and harder dynamic programs until we converge to our original problem. This strategy

will work well if the optimal parameters are relatively invariant to the parameters being modified,

which may or may not be true.

A different approach would be to adaptively modify parameter values. For instance, one could

construct sequences of parameters αm and βm such that αm → 0 and βm → 1. Alternatively, the

distance between successive iterates could be used to guide the process. If the distance between

successive iterates increases, then, the parameters would be shrinked towards 0 and 1. Otherwise, a

search process could be implemented to try to improve the speed of convergence.

6 Conclusion

This paper shows that isotone and convex/concave approximation operators preserve the stability of

value function iteration algorithms with function approximation subject to some boundary conditions.

The framework is sufficiently general to accommodate models that feature recursive preferences. Some

polynomial interpolation schemes such as Chebyshev polynomials do not satisfy these conditions, but

frequently used techniques such as continuous piecewise linear interpolation do. Our numerical exper-

iments suggest that variation diminishing spline approximation is a tool of choice for doing function

approximation. We have also shown that introducing momentum in the algorithm can significantly

speed-up convergence. An interesting avenue for future research is to study strategies for effectively

implementing this modified algorithm in practice.

21

References

Aldrich, Eric Mark and Howard Kung (2020). “Computational Methods for Production-Based Asset

Pricing Models with Recursive Utility”. In: Stud. Nonlinear Dyn. Econom. issn: 15583708. doi:

10.1515/snde-2017-0003.

Bansal, Ravi and Amir Yaron (2004). Risks for the long run: A potential resolution of asset pricing

puzzles. doi: 10.1111/j.1540-6261.2004.00670.x.

Cai, Yongyang and Kenneth Judd (2013). “Shape-preserving dynamic programming”. In: Math. Meth-

ods Oper. Res. issn: 14322994. doi: 10.1007/s00186-012-0406-5.

Caldara, Dario et al. (2012). “Computing DSGE models with recursive preferences and stochastic

volatility”. In: Rev. Econ. Dyn. issn: 10942025. doi: 10.1016/j.red.2011.10.001.

Campbell, John Y. and Robert J. Shiller (1988). “The Dividend-Price Ratio and Expectations of Future

Dividends and Discount Factors”. In: Rev. Financ. Stud. issn: 0893-9454. doi: 10.1093/rfs/1.3.

195.

Dou, Winston Wei et al. (2019). “Macro-Finance Models with Nonlinear Dynamics”. In: Univ. Chicago,

Becker Friedman Inst. Econ. Work. Pap. Forthcom.

Du, Yihong (1990). “Fixed points of increasing operators in ordered banach spaces and applications”.

In: Appl. Anal. 38.1-2, pp. 1–20. issn: 1563504X. doi: 10.1080/00036819008839957.

Epstein, Larry G. and Stanley E. Zin (1989). “Substitution, Risk Aversion, and the Temporal Behavior

of Consumption and Asset Returns: A Theoretical Framework”. In: Econometrica. issn: 00129682.

doi: 10.2307/1913778.

Gordon, Geoffrey J. (1995). “Stable Function Approximation in Dynamic Programming”. In: Mach.

Learn. Proc. 1995. doi: 10.1016/b978-1-55860-377-6.50040-2.

Goyal, Vineet and Julien Grand-Clement (2019). A first-order approach to accelerated value iteration.

arXiv: 1905.09963.

Hansen, Lars Peter and Thomas J. Sargent (2011). Robustness. isbn: 9781400829385. doi: 10.2307/

3007866.

22

Ju, Nengjiu and Jianjun Miao (2012). “Ambiguity, Learning, and Asset Returns”. In: Econometrica.

issn: 0012-9682. doi: 10.3982/ecta7618.

Judd, Kenneth (1998). Numerical Methods in Economics. arXiv: arXiv:1011.1669v3.

Klibanoff, Peter, Massimo Marinacci, and Sujoy Mukerji (2005). “A smooth model of decision making

under ambiguity”. In: Econometrica. issn: 00129682. doi: 10.1111/j.1468-0262.2005.00640.x.

Lorenz, Friedrich, Karl Schmedders, and Malte Schumacher (2020). “Nonlinear Dynamics in Condi-

tional Volatility”. In: SSRN Electron. J. Pp. 1–48. doi: 10.2139/ssrn.3575458.

Lyche, Tom and Knut Morken (2018). Spline Methods, p. 36.

Pál, Jen and John Stachurski (2013). “Fitted value function iteration with probability one contractions”.

In: J. Econ. Dyn. Control. issn: 01651889. doi: 10.1016/j.jedc.2012.08.003.

Pohl, Walter, Karl Schmedders, and Ole Wilms (2018). “Higher Order Effects in Asset Pricing Models

with Long-Run Risks”. In: J. Finance. issn: 15406261. doi: 10.1111/jofi.12615.

Ren, Guanlong and John Stachurski (2018). “Discrete Time Dynamic Programming with Recursive

Preferences: Optimality and Applications”. In: 2004, pp. 1–42. arXiv: 1812.05748. url: http:

//arxiv.org/abs/1812.05748.

— (2020). “Dynamic Programming with Value Convexity”. In: pp. 1–10.

Stachurski, John (2008). “Continuous state dynamic programming via nonexpansive approximation”.

In: Comput. Econ. issn: 09277099. doi: 10.1007/s10614-007-9111-5.

Tsitsiklis, John N. and Benjamin Van Roy (1996). “Feature-based methods for large scale dynamic

programming”. In: Mach. Learn. issn: 08856125. doi: 10.1007/BF00114724.

Vieillard, Nino et al. (2019). Momentum in reinforcement learning. arXiv: 1910.09322.

23

	Introduction
	Preliminaries
	Abstract MDP Model
	Value Function Iteration Algorithm with Function Approximation
	Numerical Experiments
	Comparison of approximation techniques
	Accelerating convergence with momentum

	Conclusion

