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State-dependent models

Dynamic stochastic economic models are normally built on the
assumption of stationary environment.

Namely, the economy�s fundamentals such as preferences,
technologies and laws of motions for exogenous variables do not
change over time (or there exists a transformation to stationary
environment, such as balanced growth).

Such models have stationary solutions in which optimal value and
decision functions depend on the current state but not on time.

The state-dependent class of models is convenient for applied work
since time-invariant solutions are relatively easy to construct.
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Example of state-dependent model

Standard neoclassical growth model:

max
fct ,kt+1g∞

t=0

E0

"
∞

∑
t=0

βtu (ct )

#
s.t. ct + kt+1 = (1� δ) kt + f (kt , zt ) ,

zt+1 = ϕ (zt , εt+1) ,

� ct � 0 and kt � 0 are consumption and capital, resp.;
� initial condition (k0, z0) is given;
�u : R+ ! R and f : R2

+ ! R+ and ϕ : R2 ! R are time-invariant
utility function, production function and law of motion for exogenous state
variable zt , resp.;
� εt+1 is i.i.d;
� β 2 (0, 1) = discount factor; δ 2 [0, 1] =depreciation rate; Et [�] =
operator of expectation.
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Example of state-dependent model (cont.)

Under standard assumptions, a solution to stationary neoclassical growth
model is:

One time-invariant value function V (kt , zt ).

One set of time-invariant policy functions, e.g., kt+1 = K (kt , zt ).
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Time-dependent models

At the same time, real-world economies constantly evolve over time,
experiencing

population growth,
technological progress,
trends in tastes and habits,
policy regime changes,
evolution of social and political institutions, etc.

Also, economic policies change over time, for example, Central Banks
can change parameters in the Taylor rule or employ time-dependent
unconventional monetary policies such as quantitative easing or
forward guidance.

If the parameters change over time, the resulting models are generally
nonstationary, and their optimal value and decision functions are
time-dependent.
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Example of time-dependent model

In�nitely-lived neoclassical growth model with time-varying fundamentals

max
fct ,kt+1g∞

t=0

E0

"
∞

∑
t=0

βtut (ct )

#
s.t. ct + kt+1 = (1� δ) kt + ft (kt , zt ) ,

zt+1 = ϕt (zt , εt+1) ,

� ct � 0 and kt � 0 are consumption and capital, resp.;
� initial condition (k0, z0) is given;
�ut : R+ ! R and ft : R2

+ ! R+ and ϕt : R2 ! R are time-varying
utility function, production function and law of motion for exogenous state
variable zt , resp.;
� sequence of ut , ft and ϕt for t � 0 is known to the agent in period
t = 0; εt+1 is i.i.d;
� β 2 (0, 1) = discount factor; δ 2 [0, 1] =depreciation rate; Et [�] =
operator of expectation.
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Example of time-dependent model (cont.)

If a model is nonstationary and time-dependency is nontrivial, a solution is:

An in�nite-sequence of time-varying value functions: V0 (k0, z0),
V1 (k1, z1) , ...

An in�nite-sequence of time-varying policy functions:
k1 = K0 (k0, z0), k1 = K0 (k0, z0),...

Conventional numerical methods used for state-dependent models are
not directly suitable for analyzing time-dependent models.
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Why cannot we solve a nonstationary model with
conventional solution methods?

A stationary growth model (dynamic-programming formulation):

V (k, z) = max
c ,k 0

�
u (c) + βE

�
V
�
k 0, z 0

��	
s.t. k 0 = (1� δ) k + zf (k)� c ,
ln z 0 = ρ ln z + ε0, ε0 � N

�
0, σ2

�
.

An interior solution satis�es the Euler equation:

u0 (c) = βE
�
u0
�
c 0
� �
1� δ+ z 0f 0

�
k 0
���

.

Conventional solution methods: either iterate on Bellman equation
until a �xed-point V is found or iterate on Euler equation until a
�xed-point decision function k 0 = K (k, z) is found.
However, if u, f , ρ and σ are time-dependent, then Vt (�) 6= Vt+1 (�)
and Kt (�) 6= Kt+1 (�), i.e., no �xed-point functions V and K .
We need to construct a sequence (path) of time-dependent value
functions (V0 (�) ,V1 (�) , ...), decision functions (K0 (�) ,K1 (�) , ...).
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This workshop

In Part 1 of this workshop, we review numerical techniques for
state-dependent models with an emphasis on problems with a large
number of state variables, including:

grid techniques (Smolyak, simulated, cluster, epsilon-distinguishable
sets and low-discrepancy sequences),
integration methods (quadrature, monomial formulas, Monte Carlo),
numerically stable approximation techniques (singular value
decomposition (SVD), principal component (PC) approach, linear
programming, Tykhonov and other types of regularization, truncated
SVD and PC methods),
alternative iterative procedures (including endogenous grid and
envelope condition methods),
precomputation techniques (integrals and intratemporal choice
functions).

We illustrate these methods by examples of one and multi-agent
neoclassical growth models, as well as a large-scale new Keynesian
model.
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This workshop (cont.)

In Part 2, we show a quantitative framework, called extended function
path (EFP), for calibrating, solving, simulating and estimating
time-dependent models.

We apply EFP to solve a collection of challenging nonstationary
time-dependent and unbalanced-growth applications, including:

stochastic growth models with parameters shifts and drifts,
capital augmenting technological progress,
anticipated regime switches,
time-trends in volatility of shocks,
seasonal �uctuations,
new Keynesian economies with time-varying parameters.

Also, we show an example of estimation and calibration of parameters
in an unbalanced growth model using the data on the U.S. economy.

Maliar and Maliar (2017) State-Dependent and Time-Dependent Models CEF 2017 Workshop 10 / 47



Papers presented

For general background on global solution methods for large-scale models,
we will use:

Lilia Maliar and Serguei Maliar, (2014). �Numerical methods for large
scale dynamic economic models�, in: Schmedders, K. and K.L. Judd
(Eds.), Handbook of Computational Economics, Volume 3, Chapter
7, 325-477, Amsterdam: Elsevier Science.

Maliar and Maliar (2017) State-Dependent and Time-Dependent Models CEF 2017 Workshop 11 / 47



Papers presented

Other papers on state-dependent large-scale models that we will cover are:

1. Kenneth L. Judd, Lilia Maliar and Serguei Maliar, (2011).
Numerically stable and accurate stochastic simulation approaches for
solving dynamic models. Quantitative Economics 2, 173-210.

2. Kenneth L. Judd, Lilia Maliar, Serguei Maliar and Rafael Valero,
(2014). �Smolyak method for solving dynamic economic models:
Lagrange Interpolation, anisotropic grid and adaptive domain�,
Journal of Economic Dynamic and Control 44(C), 92-123.

3. Lilia Maliar and Serguei Maliar, (2015). �Merging simulation and
projection aproaches to solve high-dimensional problems with an
application to a new Keynesian model�, Quantitative Economics 6,
1-47.

4. Kenneth L. Judd, Lilia Malia, Serguei Malia and Inna Tsener, (2016).
"How to solve dynamic stochastic models computing expectations
just once�", Quantitative Economics (forthcoming).

Maliar and Maliar (2017) State-Dependent and Time-Dependent Models CEF 2017 Workshop 12 / 47



Papers presented (cont.)

5. Lilia Maliar and Serguei Maliar, (2013). �Envelope Condition Method
versus Endogenous Grid Method for Solving Dynamic Programming
Problems�, Economic Letters 120, 262-266.

6. Cristina Arellano, Lilia Maliar, Serguei Maliar and Viktor Tsyrennikov,
(2016). �Envelope condition method with an application to default
risk models�, Journal of Economic Dynamics and Control 69, 436-459.

7. Kenneth L. Judd, Lilia Maliar and Serguei Maliar, (2016). �Lower
bounds on approximation errors to numerical solutions of dynamic
economic models�, Econometrica (forthcoming).

8. Vadym Lepetuyk, Lilia Maliar and Serguei Maliar (2017). "Should
central banks worry about nonlinearities of their large-scale
macroeconomic models?", Bank of Canada working paper 2017-21.
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Papers presented (cont.)

Time-dependent models are analyzed by using the EFP framework
developed in:

1. Lilia Maliar, Serguei Maliar, John B. Taylor and Inna Tsener (2015).
"A tractable framework for analyzing a class of nonstationary Markov
models", NBER 21155.

2. Lilia Maliar (2016). "Forward guidence puzzle and turnpike theorem",
manuscript.

3. Lilia Maliar, Serguei Maliar, John B. Taylor and Inna Tsener (2017).
"Extended function path method", manuscript.
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Computer codes

Please, download the code from https://stanford.edu/~maliarl/Codes.html

"GSSA_Two_Models.zip" - Generalized Stochastic Simulation
Algorithm (GSSA),
"ECM_and_EGM_MM_2013.zip" - Envelope condition and
endogeneous grid for growth model with valued leisure,
"7_methods_for_growth_model_AMMT_2016.zip" - Comparison
of 7 iterative methods for a growth model (including value iteration,
policy iteration, Euler equation, envelope condition and endogenous
grid),
"Smolyak_Anisotropic_JMMV_2014.zip" - Smolyak method,
"EDSCGA_Maliars_QE6_2015.zip" - Epsilon-distingushable set and
cluster-grid methods,
"Precomputation_JMMT_QE_2016.zip" - Precomputation of
integrals (= get rid o¤ expectations before solving the model),
"EFP_MMTT_2015.zip" - Extended Function Path (EFP) method
for time-dependent models.
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Model with elastic labor supply: a divisible-labor version

We consider a standard growth model with elastic labor supply. The agent
solves:

max
fkt+1,ct ,`tgt=0,...,∞

E0

(
∞

∑
t=0

βtu (ct , `t )

)
s.t. ct + kt+1 = (1� δ) kt + θt f (kt , `t ) ,

ln θt+1 = ρ ln θt + σεt+1, εt+1 � N (0, 1) ,

where initial condition (k0, θ0) is given;
f (�) = production function;
ct = consumption; kt+1 = capital; θt = productivity level;
β = discount factor; δ = depreciation rate of capital;
ρ = autocorrelation coe¢ cient of the productivity level;
σ = standard deviation of the productivity shock εt+1.
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Model with elastic labor supply: a divisible-labor version
(cont.)

Assume that the agents value leisure.
1 = total time endowment,
lt = leisure,
`t = working hours.
The agent can choose any number of working hours between 0 and 1.

`t + lt = 1.

u (ct , lt ) = the momentary utility (strictly increasing, and concave).
A common assumption is the CRRA utility function:

u (ct , lt ) =

�
cvt l

1�v
t

�1�σ � 1
1� σ

,

v = share of consumption; σ = coe¢ cient of relative risk aversion.
If σ = 1, then u (ct , lt ) = ln ct + A ln lt .
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Time invariant decision functions

Our goal is to solve for a recursive Markov equilibrium in which the
decisions on next-period capital, consumption and labor are made
according to some time invariant state contingent functions

k 0 = K (k, θ) , c = C (k, θ) , ` = L (k, θ) .

A version of model in which the agent does not value leisure and
supplies to the market all her time endowment is referred to as a
model with inelastic labor supply.

Such model is obtained by replacing u (ct , `t ) and f (kt , `t ) with
u (ct ) and f (kt ), respectively.

Maliar and Maliar (2017) State-Dependent and Time-Dependent Models CEF 2017 Workshop 18 / 47



First-order conditions

We assume that a solution to the model is interior and satis�es budget
constraint

ct + kt+1 = (1� δ) kt + θt f (kt , `t )

and the �rst-order conditions (FOCs)

u1 (ct , `t ) = βEt fu1 (ct+1, `t+1) [1� δ+ θt+1f1 (kt+1, `t+1)]g , (1)

u2 (ct , `t ) = u1 (ct , `t ) θt f2 (kt , `t ) . (2)

FOC (1) is the Euler equation or inter-temporal FOC (relates
variables of di¤erent periods).

FOC (2) is intra-temporal FOC (relates variables within the same
period).
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Three broad classes of numerical methods

1 Projection methods, Judd (1992), Christiano and Fisher (2000), etc.

solution domain = prespeci�ed grid of points;
accurate and fast with few state variables but cost grows exponentially
with the number of state variables (curse of dimensionality!).

2 Perturbation methods, Judd and Guu (1993), Gaspar and Judd
(1997), Juillard (2003), etc.

solution domain = one point (steady state);
practical in large-scale models but the accuracy can deteriorate
dramatically away from the steady state.

3 Stochastic simulation methods, Marcet (1988), Smith (2001), Judd et
al. (2011), etc.

solution domain = simulated series;
simple to program but often numerically unstable, and the accuracy is
lower than that of the projection methods.
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An example of a global projection-style Euler equation
method

We approximate functions K , C , and L numerically.
Let us consider a projection-style method in line with Judd (1992)
that approximates these functions to satisfy the FOCs on a grid of
points.

Maliar and Maliar (2017) State-Dependent and Time-Dependent Models CEF 2017 Workshop 21 / 47



An outline of a global projection-style Euler equation
method

(EEM): A global projection-style Euler equation method.
Step 1. Choose functional form bK (�, b) for representing K ,
where b is the coe¢ cients vector.
Choose a grid fkm , θmgm=1,...,M on which bK is constructed.
Step 2. Choose nodes, εj , and weights, ωj , j = 1, ..., J, for approximating
integrals. Compute next-period productivity θ0m,j = θ

ρ
m exp

�
εj
�
for all j , m.

Step 3. Solve for b that approximately satis�es the model�s equations:

u1 (cm , `m) = β
J

∑
j=1

ωj �
h
u1
�
c 0m,j , `

0
m,j

� �
1� δ+ θ0m,j f1

�
k 0m , `

0
m,j

��i
,

u2 (cm , `m) = u1 (cm , `m) θm f2 (km , `m) ,
cm = (1� δ) km + θm f (km , `m)� k 0m

u2
�
c 0m,j , `

0
m,j

�
= u1

�
c 0m,j , `

0
m,j

�
θ0m,j f2

�
k 0m , `

0
m,j

�
,

c 0m,j = (1� δ) k 0m + θ0m,j f
�
k 0m , `

0
m,j

�
� k 00m,j
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Discussion of Step 3

In Step 3, we use the assumed decision function bK (�, b):
the choices in the current period k 0m = bK (km , θm ; b) � k 0m (b);
future shocks θ0m,j = θ

ρ
m exp (εj )

the choices in J possible future states k 00m,j = bK �k 0m , θ0m,j ; b�
u1 (cm , `m) = β

J

∑
j=1

ωj

h
u1
�
c 0m,j , `

0
m,j

� �
1� δ+ θ0m,j f1

�
k 0m (b) , `

0
m,j

��i
,

u2 (cm , `m) = u1 (cm , `m) θm f2 (km , `m) ,
cm = (1� δ) km + θm f (km , `m)� k 0m (b)

u2
�
c 0m,j , `

0
m,j

�
= u1

�
c 0m,j , `

0
m,j

�
θ0m,j f2

�
k 0m (b) , `

0
m,j

�
,

c 0m,j = (1� δ) k 0m (b) + θ0m,j f
�
k 0m (b) , `

0
m,j

�
� bK �k 0m (b) , θ0m,j ; b�

We must use these 2J + 3 equations to identify 2J + 2 unknowns

cm , `m ,
n
c 0m,j , `

0
m,j

oJ
j=1

and the coe¢ cients b.
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Unidimensional grid points and basis functions

To solve the model, we discretize the state space in Step 1 into a
�nite set of grid points fkm , θmgm=1,...,M .
Our construction of a multidimensional grid begins with
unidimensional grid points and basis functions.

The simplest possible choice is a family of ordinary polynomials and a
grid of uniformly spaced points.

However, many other choices are possible.

In particular, a useful alternative is a family of Chebyshev polynomials
and a grid composed of extrema of Chebyshev polynomials.

Such polynomials are de�ned in the interval [�1, 1], and thus, the
model�s variables such as k and θ must be rescaled to be inside this
interval prior to any computation.
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Unidimensional grid of uniformly spaced points and
ordinary polynomials

Table: Unidimensional grid of uniformly spaced points and ordinary polynomials

Ordinary polyn. Uniform grid of
n of degree n � 1 n points on [�1, 1]

1 1 0

2 x �1, 1

3 x 2 �1 0 1

4 x 3 �1, � 2
3 ,

2
3 , 1

5 x 4 �1 � 1
2 0 � 1

2 1

Notes: Ordinary polynomial of degree n� 1 is given by Pn�1(x) = xn�1.
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Unidimensional Chebyshev polynomials and a grid of their
extrema

Table: Unidimensional Chebyshev polynomials and a grid of their extrema

Chebyshev polyn. n extrema of Chebyshev
n of degree n � 1 polyn. of degree n � 1

1 1 0

2 x �1, 1

3 2x 2 � 1 �1 0 1

4 4x 3 � 3x �1, � 1
2 ,

1
2 , 1

5 8x 4 � 8x 2 + 1 �1 � 1p
2

0 � 1p
2

1

Notes: Chebyshev polynomial of degree n� 1 is given by
Tn�1(x) = cos((n� 1)cos�1(x)); and �nally, n extrema of Chebyshev polynomials of

degree n� 1 are given by ζnj = �cos(π(j � 1)/(n� 1)), j = 1, ..., n.
Intuition: many points close to the edges help to approximate a function
at the edges.
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Ordinary versus Chebyshev polynomials

As we see, Chebyshev polynomials are just linear combinations of
ordinary polynomials.

If we had an in�nite arithmetic precision on a computer, it would not
matter which family of polynomials we use.

But with a �nite number of �oating points, Chebyshev polynomials
have an advantage over ordinary polynomials.
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Ordinary versus Chebyshev polynomials
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Comments about unidimensional grid points and basis
functions

For the ordinary polynomial family, the basis functions look very
similar on R+.

Approximation methods using ordinary polynomials may fail because
they cannot distinguish between similarly shaped polynomial terms
such as x2 and x4.

In contrast, for the Chebyshev polynomial family, basis functions have
very di¤erent shapes and are easy to distinguish.
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Chebyshev polynomials for approximation

Let us illustrate the use of Chebyshev polynomials for approximation by
way of example.

Example

Let f (x) be a function de�ned on an interval [�1, 1], and let us
approximate this function with a Chebyshev polynomial function of degree
two, i.e.,

f (x) � bf (x ; b) = b1 + b2x + b3 �2x2 � 1� .
We compute b � (b1, b2, b3) so that bf (�; b) and f coincide in three
extrema of Chebyshev polynomials, namely, f�1, 0, 1g,

bf (�1; b) = b1 + b2 � (�1) + b3
�
2 � (�1)2 � 1

�
= f (�1)bf (0; b) = b1 + b2 � 0+ b3

�
2 � 02 � 1

�
= f (0)bf (1; b) = b1 + b2 � 1+ b3

�
2 � 12 � 1

�
= f (1) .
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Example
(cont.) This leads us to a system of three linear equations with three
unknowns that has a unique solution24 b1

b2
b3

35 =
24 1 �1 1
1 0 �1
1 1 1

35�1 24 f (�1)
f (0)
f (1)

35
=

24 1
4

1
2

1
4

� 1
2 0 1

2
1
4 � 1

2
1
4

3524 f (�1)
f (0)
f (1)

35 =
264

f (�1)
4 + f (0)

2 + f (1)
4

� f (�1)
2 + f (1)

2
f (�1)
4 � f (0)

2 + f (1)
4

375 .
It is possible to use Chebyshev polynomials with other grids, but the
grid of extrema (or zeros) of Chebyshev polynomials is a perfect
match.
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Multidimensional grid points and basis functions

In Step 1 of the Euler equation algorithm, we must specify a method
for approximating, representing, and interpolating two-dimensional
functions.
A tensor-product method constructs multidimensional grid points and
basis functions using all possible combinations of unidimensional grid
points and basis functions.
As an example, let us approximate the capital decision function K .
First, we take two grid points for each state variable, namely, fk1, k2g
and fθ1, θ2g, and we combine them to construct two-dimensional grid
points, f(k1, θ1) , (k1, θ2) , (k2, θ1) , (k2, θ2)g.
Second, we take two basis functions for each state variable, namely,
f1, kg and f1, θg, and we combine them to construct
two-dimensional basis functions f1, k, θ, kθg.
Third, we construct a �exible functional form for approximating K ,bK (k, θ; b) = b1 + b2k + b3θ + b4kθ. (3)
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Multidimensional grid points and basis functions (cont.)

Finally, we identify the four unknown coe¢ cients (b1, b2, b3, b4) � b
such that K (k, θ) and bK (k, θ; b) coincide exactly in the four grid
points constructed.

That is, we write Bb = w , where

B =

2664
1 k1 θ1 k1θ1
1 k1 θ2 k1θ2
1 k2 θ1 k2θ1
1 k2 θ2 k2θ2

3775 , b =

2664
b1
b2
b3
b4

3775 , w =

2664
K (k1, θ1)
K (k1, θ2)
K (k2, θ1)
K (k2, θ2)

3775 .
If B has full rank, then coe¢ cients vector b is uniquely determined by
b = B�1w .
The obtained approximation can be used to interpolate the capital
decision function in each point o¤ the grid.
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Numerical integration

For integration, we consider �rst a simple two-node Gauss-Hermite
quadrature method that approximates an integral of a function of a
Normally distributed variable ε � N

�
0, σ2

�
with a weighted average

of just two values ε1 = �σ and ε2 = σ that happen with probability
ω1 = ω2 =

1
2 , i.e.,Z ∞

�∞
G (ε)w (ε) dε � G (ε1)ω1 + G (ε2)ω2 =

1
2
[G (�σ) + G (σ)] ,

where G is a bounded continuous function, and w is a density
function of a Normal distribution, i.e.,

u1 (cm , `m) =
1
2

β
�
u1
�
c 0m,σ, `

0
m,σ

� �
1� δ+ θ0m,σf1

�
k 0m (b) , `

0
m,σ

��
+u1

�
c 0m,�σ, `

0
m,�σ

� �
1� δ+ θ0m,�σf1

�
k 0m (b) , `

0
m,�σ

��	
Alternatively, we can use a three-node Gauss-Hermite quadrature

method, which uses nodes ε1 = 0, ε2 = σ
q

3
2 , ε3 = �σ

q
3
2 and

weights ω1 =
2
p

π
3 , ω2 = ω3 =

p
π
6 .
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Numerical integration (cont.)

Another possibility is to approximate integrals using Monte Carlo
integration, e.g., Parameterized Expectation Algorithm (PEA) by den
Haan and Marcet (1990).

We can make J random draws and approximate an integral with a
simple average of the draws,

Z ∞

�∞
G (ε)w (ε) dε � 1

J

J

∑
j=1
G (εj ) .
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Numerical integration (cont.)

Let us compare the above integration methods using an example.

Example

Consider a quadratic function G (ε) = b1 + b2ε+ b3ε2, where
ε � N

�
0, σ2

�
.

(i) An exact integral is I �
R ∞
�∞

�
b1 + b2ε+ b3ε2

�
w (ε) dε = b1 + b3σ2;

(ii) A two-node Gauss-Hermite quadrature integration method yields
I � b1 + b3σ2;
(iii) A one-node Gauss-Hermite quadrature integration method yields
I � b1;
(iv) A Monte Carlo integration method yields

I � b1 + b2
h
1
J ∑J

j=1 εj

i
+ b3

h
1
J ∑J

j=1 ε2j

i
.

(v) Quasi Monte Carlo methods for integration - the error bounds are
provided in Rust (1987).
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Numerical integration (cont.)

Note that the quadrature method with two nodes delivers the exact
value of the integral.

Even with just one node, the quadrature method can deliver accurate
integral if G is close to linear (which is often the case in real business
cycle models), i.e., b3 � 0.
To assess the accuracy of Monte Carlo integration, let us use
σ = 0.01, which is consistent with the magnitude of �uctuations in
real business cycle models.
�Let us concentrate just on the term 1

J ∑J
j=1 εj for which the

expected value and standard deviation are E
h
1
J ∑J

j=1 εj

i
= 0 and

std
h
1
J ∑J

j=1 εj

i
= σp

J
, respectively.

�The standard deviation depends on the number of random draws:
with one random draw, it is 0.01 and with 1,000,000 draws, it is

0.01p
1000000

= 10�5.
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Numerical integration (cont.)

The last number represents an (expected) error in approximating the
integral and restricts the overall accuracy of solutions that can be
attained by a solution algorithm using Monte Carlo integration.
Why is Monte Carlo integration ine¢ cient in this context?
This is because we compute expectations as do econometricians, who
do not know the true density function of the data-generating process
and have no choice but to estimate such a function from noisy data
using a regression.
However, when solving an economic model, we do know the process
for shocks. Hence, we can construct the "true" density function and
we can use such a function to compute integrals very accurately,
which is done by the Gauss-Hermite quadrature method.
This is done in Judd, Maliar and Maliar (2011) who develop
generalized stochastic simulation method (GSSA) that attains high
accuracy by combining stochastic simulation for constructing the
domain and accurate deterministic integration methods.
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Optimization methods

To solve nonlinear equations with respect to the unknown parameters
vectors bk , bc , b`.
This can be done with Newton-style optimization methods; see, e.g.,
Judd (1992).
Such methods compute �rst and second derivatives of an objective
function with respect to the unknowns and move in the direction of
gradient descent until a solution is found.
Newton methods are fast and e¢ cient in small problems but become
increasingly expensive when the number of unknowns increases.
In high-dimensional applications, we may have thousands of
parameters in approximating functions, and the cost of computing
derivatives may be prohibitive.
In such applications, derivative-free optimization methods are an
e¤ective alternative.
A useful choice is a �xed-point iteration method that �nds a root of
x = F (x) by constructing a sequence x (i+1) = F

�
x (i )
�
.
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Optimization methods (cont.)

We illustrate this method using an example.

Example

Consider an equation x3 � x � 1 = 0. Let us rewrite this equation as
x = (x + 1)1/3 and construct a sequence x (i+1) = (x (i ) + 1)1/3 starting
from x (0) = 1. This yields a sequence x (1) = 1.26, x (2) = 1.31,
x (3) = 1.32,... which converges to a solution.

The advantage of �xed-point iteration is that it can iterate in this
simple manner on objects of any dimensionality, for example, on a
vector of the polynomial coe¢ cients.

The cost of this procedure does not grow considerably with the
number of the polynomial coe¢ cients.
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Nonconvergence of �xed-point iteration

The shortcoming of �xed point iteration is that it does not always
converge.

Example

If we wrote the above equation as x = x3 � 1 and implemented �xed-point
iteration x (i+1) =

�
x (i )
�3
� 1, we would obtain a sequence that diverges

to �∞ starting from x (0) = 1.
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Evaluating accuracy of solutions

Our solution procedure has two stages. In Stage 1, a method
attempts to compute a numerical solution to a model.
Provided that it succeeds, we proceed to Stage 2, in which we subject
a candidate solution to a tight accuracy check.
We speci�cally construct a set of points fki , θigi=1,...,I that covers an
area in which we want the solution to be accurate, and we compute
unit-free residuals in the model�s equations:

RBC (ki , θi ) =
(1� δ) ki + θi f (ki , `i )

ci + k 0i
� 1,

REE (ki , θi ) = βE
�
u1 (c 0i , `

0
i )

u1 (ci , `i )

�
1� δ+ θ0i f1

�
k 0i , `

0
i

���
� 1,

RMUL (ki , θi ) =
u1 (ci , `i ) θi f2 (ki , `i )

u2 (ci , `i )
� 1,

where RBC , REE and RMUL are the residuals in the budget
constraint, Euler equation, and FOC for the marginal utility of leisure.
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Evaluating accuracy of solutions

In the exact solution, residuals are zero, so we judge the quality of
approximation by how far these residuals are away from zero.
We should never evaluate residuals on points used for computing a
solution in Stage 1 (in particular, for some methods the residuals in
the grid points are zeros by construction) but we do so on a new set
of points constructed for Stage 2.
We consider two alternative sets of I points:

a �xed rectangular grid
a stochastic simulation.

We report two accuracy measures, namely, the average and maximum
absolute residuals across both the optimality conditions and I test
points in log 10 units, for example, RBC (ki , θi ) = �2 means that a
residual of 10�2 = 1%, and RBC (ki , θi ) = �4.5 means
10�4.5 = 0.00316%.
Judd et al (2017) show how to construct bounds on approximation
errors from the residuals.
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Economically signi�cant accuracy

If either a solution method fails to converge in Stage 1 or the quality
of a candidate solution in Stage 2 is economically inacceptable, we
modify the algorithm�s design.

For example, change the number and placement of grid points,
approximating functions, integration method, �tting method, etc.

We repeat the computations until a satisfactory solution is produced.

We do not want the solution to be more accurate than needed - this
is costly!
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Challenges of economic dynamics

Curse of dimensionality
It turned out that not only analytical but also numerical solutions can
be expensive (or infeasible) to obtain for many models of interest.
Curse of dimensionality: the complexity of a problem grows
exponentially with the size:

assume that there are N capital stocks;
take 10 grid points for each capital stock;
we obtain 10N grid points for N capital stocks, e.g., N = 10) 1010

grid points!

(a) Tensor product grids =) Curse of dimensionality!
(b) Product quadrature integration =) Curse of dimensionality!
(c) Newton�s solver (Jacobian, Hessian) =) Curse of dimensionality!
Economic models can easily become intractable even with
supercomputers.

For large problems, we need state-of-art numerical methods, as well as
powerful hardware and software.
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Challenges of economic dynamics

Multiple solutions, numerical instability and non-convergence

Optimal control problems can be formulated as dynamic programming
(DP) problems and described by Bellman equation. For these
problems, we can show the existence of solutions and convergence.

Equilibrium problems do not always admit a DP formulation. Such
problems lead to systems of non-linear equations that may have
multiple solutions.

The convergence is not guaranteed for equilibrium problems.

Furthermore, inverse problems implied by some models can be ill
conditioned.

We need numerical techniques that can compute multiple equilibria and to
select a particular equilibrium of interest - little progress so far!
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Challenges of economic dynamics

Estimating parameters in economic models with the data:
Nested �xed point analysis requires us to compute a solution to an
economic model is computed within an estimation procedure, for
example,

Pakes and McGuire (2001) used stochastic simulation for the
estimation of IO models
Smets and Wouters (2003, 2007) used perturbation solutions for the
estimation of a new Keynesian model
Fernández-Villaverde and Rubio-Ramírez (2007), and Winschel and
Krätzig (2010) estimate parameters in non-linear macroeconomic
models

In an estimation procedure, we may need to solve a model under
di¤erent parameters values 50,000 times or so.

We need very fast and e¢ cient numerical algorithms, as well as parallel
computing (multiple cores, GPU computing and supercomputers) - very
challenging applications!
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Envelope Condition Method
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Envelope condition method (ECM)

Conventional DP approaches are expensive (rely on numerical
maximization and solvers).

How one can make DP approaches more tractable?

1. Carroll (EL, 2005): Endogenous Grid Method (EGM)
2. Maliar and Maliar (EL, 2013): Envelope Condition Method (ECM)

ECM uses "forward" recursion and di¤ers from conventional Bellman
operator
constructs policy functions using envelope condition (EC) instead of
�rst-order condition (FOC)
solves for derivatives of value function instead of (in addition to)
value function itself

For growth model, ECM can solve Bellman equation by using only direct
calculation - no need of numerical solver or maximization!

Cristina Arellano, Lilia Maliar, Serguei Maliar and Viktor Tsyrennikov,
(2016). �Envelope condition method with an application to default
risk models�, Journal of Economic Dynamics and Control 69, 436-459.
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Results:

1 ECM for default risk models:
for a version of Arellano�s (2008) model, ECM is about 50x time
faster than conventional VFI!

2 ECM for large-scale problems:
ECM can solves a multi-country models with at least up to 20 state
variables and compete in accuracy and speed with the state-of-the-art
Euler equation methods

3 Convergence theorems for ECM:
Our formal results show that, unfortunately, ECM is not necessarily a
contraction mapping, unlike conventional Bellman operator.
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Model of default risk of Arellano (2008)

A country solves

max
fBt+1,ctgt=0,...,∞

E0
∞

∑
t=0

βtu (ct )

s.t. ct = yt + Bt � q(Bt+1, yt )Bt+1
log(yt ) = ρ log(yt�1) + εyt

where E [εy ] = 0, E
h
(εy )2

i
= η2y and (B0, y0) is given;

ct , yt and Bt are consumption, capital and bonds, respectively;
q(Bt+1, yt ) is price of your bonds depending on quantity Bt+1 & state yt .

You may default by setting at Bt = 0 (Bt < 0 if you are a borrower)
) you will be punished.
q(Bt+1

(�)
, yt
(+)
) increases with the probability of default (investors

compute your probability of default in all states (Bt , yt ) conditional
on realization yt+1).
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How is the model of default risk solved?

For this presentation, consider Arellano�s model without default

max
fBt+1,ctgt=0,...,∞

E0
∞

∑
t=0

βtu (ct )

s.t. ct = yt + Bt � qBt+1
log(yt ) = ρ log(yt�1) + εyt

where E [εy ] = 0, E
h
(εy )2

i
= η2y and q =

1
1+r is determined by the world

interest rate on borrowing.
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Conventional DP approaches

Conventional VFI on Bellman equation iterates backward:

V (B, y) = max
c ,B 0

�
u(c) + βE

�
V (B 0, y 0)

�	
s.t. c = y + B � qB 0

Take a grid of points for (B, y), assume some (FUTURE!) V and �nd
maximum of

max
B 0

�
u(y + B � qB 0) + βE

�
V (B 0, y 0)

�	
Discretization of state space: discretize state space (B, y) into a large
number of points.

Parametric dynamic programming: approximate V with a parametric
function.
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Conventional DP approaches (cont.)

For example, assume a Cobb-Douglas utility function and polynomial
approximation of V

max
B 0

�
(y + B � qB 0)1�γ

1� γ

+βE
h
b0 + b1B 0 + b2y 0 + b3

�
B 0
�2
+ ...+ bk

�
B 0
�d io

Solving a maximization problem in each grid point (on multiple iterations)
is expensive!
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Conventional DP approaches (cont.)

If V is di¤erentiable, instead of a maximization problem, we can �nd a
solution to FOCs

max
B 0

�
u(y + B � qB 0) + βE

�
V (B 0, y 0)

�	
Find the derivative and set it to zero

u0(y + B � qB 0)q = βE
�
V1(B 0, y 0)

�
We need to �nd B 0 that solves this equation

(y +B�qB 0)�γq+ βE
h
b0 + b1B 0 + b2y 0 + b3

�
B 0
�2
+ ...+ bk

�
B 0
�d i

= 0

This nonlinear equation that must be solved w.r.t B 0 in each grid point
(B, y)

Solving a non-linear equation in each grid point (on multiple iterations) is
also expensive!
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Conventional DP approaches (cont).

Conventional DP approaches are tractable only for relatively simple
problems.

What alternatives are available to conventional DP approaches?
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Endogenous grid method (EGM) of Carroll (2005)

Consider again the FOC

(y + B � qB 0)�γq

+ βE
h
b0 + b1B 0 + b2y 0 + b3

�
B 0
�2
+ ...+ bk

�
B 0
�d i

= 0

Note that given (B, y), it is di¢ cult to solve for B 0

But given (B 0, y), we can solve for B explicitly!

B =
�
�β

q
E
h
b0+b1B 0+b2y 0+b3

�
B 0
�2
+...+ bk

�
B 0
�d i�� 1

γ

+qB 0�y

Instead of B 0 (B, y), we characterize the solution by inverse B (B 0, y)

That is, we construct a grid for (B 0, y) (this gives the name
"endogenous grid" to Carroll�s method) and solve for B (B 0, y)
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Envelope condition method of Maliar and Maliar (2013)

Instead of iteration on FOC using future V , iterate on envelope
condition assuming (CURRENT!) V :

V (B, y) = max
c ,B 0

�
u(c) + βE

�
V (B 0, y 0)

�	
s.t. c = y + B � qB 0

Envelope condition V1(B, y) = u0 (c)

For example, if u (c) = c1�γ

1�γ , we have

Assume V : V (B, y)) V1(B, y) = c�γ

) c = V1(B, y)�1/γ and B 0 =
1
q
(c � y � B)

) V (B, y) = max
c ,B 0

�
u(c) + βE

�
V (B 0, y 0)

�	
Note: We �nd everything analytically! We avoid a numerical solver and
numerical optimization.
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Envelope condition method

Solving for value function V (ECM-VF) versus its derivative V1
(ECM-DVF)

For example, if u (c) = c1�γ

1�γ , we have

Assume V1(not V ) : V1(B, y) = c�γ

) c = V1(B, y)�1/γ and B 0 =
1
q
(c � y � B)

) u(c) = βE
�
V1(B 0, y 0)

�
= V1(B, y)

Why can this be a good idea?
Assume a second-degree polynomial function for
V (B, y) � b0 + b1B + b2y + b3B2 + b4By + b5y2.
Then, V1(B, y) � b1 + 2b3B + b4y is a �rst-degree polynomial.

We "lose" one polynomial degree when di¤erentiating V to compute V1
which reduces accuracy.

Maliar and Maliar (2017) Part 1: State-Dependent Models CEF 2017 Workshop 13 / 147



Numerical examples

ε = 10�5: 11.5sec(s) for ECM, 24.3sec(s) for EGM, 510.8 sec(s) for VFI

ECM can solve large scale problems with dozens of state variables!Maliar and Maliar (2017) Part 1: State-Dependent Models CEF 2017 Workshop 14 / 147



Conclusion

Conventional DP approaches are expensive and intractable even for
moderately large problems

Carroll (2005) introduced a far more e¢ cient endogenous grid
method (EGM)

We introduced a competing envelope condition method (ECM)

In the studied examples, EGM and ECM have similar performance

In other applications, one method can have advantage over the other

We show that ECM can be used to solve large problems and has
accuracy and speed comparable to state-of-the-art Euler equation
methods
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Computer codes

"ECM_and_EGM_MM_2013.zip"

Envelope condition and endogenous grid method for growth model
with valued leisure.

"7_methods_for_growth_model_AMMT_2016.zip". Comparison:

conventional value and policy iteration

envelope condition value and policy iteration

envelope condition method iterating on derivative of value function

endogenous grid method

conventional Euler equation method.
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Smolyak Method
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Introduction

In a seminal work, Sergey Smolyak (1963) introduced a sparse grid
technique for representing, interpolating and integrating
multidimensional functions.
The Smolyak technique builds on non-product rules and does not
su¤er from the curse of dimensionality (for smooth functions).
Idea of the Smolyak method:

Not all tensor product terms are equally important for the quality of
approximation.
Low-order terms are more important than high-order terms (this is like
Taylor series).
The Smolyak technique orders all tensor-product elements by their
potential importance and selects a relatively small number of the most
important elements.

A parameter, called a level of approximation (like the order of Taylor
expansion), controls how many tensor-product elements are included
into the Smolyak grid.
By increasing the level of approximation µ, we add new elements and
improve the quality of approximation.Maliar and Maliar (2017) Part 1: State-Dependent Models CEF 2017 Workshop 18 / 147



Introduction

Examples of Smolyak grids under the approximation levels µ = 0, 1, 2, 3
for the two-dimensional case.
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Introduction

Tensor-product grid with 5d points vs. Smolyak grid

d Tensor-product grid Smolyak grid
with 5d points

µ = 1 µ = 2 µ = 3

1 5 3 5 9
2 25 5 13 29
10 9,765,625 21 221 1581
20 95,367,431,640,625 41 841 11,561

The number of points in the Smolyak grids grows polynomially with
dimensionality d .

for µ = 1, we have 1+ 2d elements (grows linearly);
for µ = 2, we have 1+ 4d + (4d (d � 1))/2 elements (grows
quadratically).

A relatively small number of Smolyak grid points contrasts sharply
with a huge number of tensor-product grid points.
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Introduction

Our results: toward more e¢ cient Smolyak interpolation
1. E¢ cient construction of Smolyak polynomials.

The nested-set construction of Smolyak polynomials is ine¢ cient: it
�rst creates a long list of repeated elements and then eliminates the
repeated elements from the list.
We construct Smolyak polynomials using disjoint sets =) we avoid
costly repetitions of elements.

2. A Lagrange-style technique for computing coe¢ cients.
The conventional Smolyak method computes polynomial coe¢ cients
using a formula with a large number of nested loops.
We compute the coe¢ cients by precomputing a solution to the inverse
problem =) a simple, general and cheap technique.

3. Anisotropic grid: di¤erent approximation levels for di¤erent variables.
The conventional Smolyak method is symmetric (with the same
number of grids and polynomial functions for all variables).
We develop an anisotropic version of the Smolyak method =) we can
vary the quality of approximation across variables.
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Introduction

Our results: adapting Smolyak method to economic applications

4. Adaptive domain.

The conventional Smolyak method constructs grid points in a
normalized multidimensional hypercube [�1, 1]d .
We show how to e¤ectively adapt the Smolyak hypercube
domain to the high-probability set of the given model.

5. Iterative procedure.

The conventional Smolyak method of Krueger and Kubler (2004) and
Malin et al. (2011) uses time iteration: given functional forms for
future variables, they solve for current variables using a numerical
solver.
We replace time-iteration with a �xed-point iteration which is
cheap and simple to implement. The �xed-point iteration involves
just straightforward computations and avoids the need for a numerical
solver under time iteration (this modi�cation, although minor in
substance, is still important for reducing the cost).
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Conventional Smolyak grid using nested sets

Unidimensional nested sets

Construct sets of points i = 1, 2, ... that satisfy two conditions:

� Condition 1. Sets i = 1, 2, ... have m (i) = 2i�1 + 1 points for i � 2
and m (1) � 1.

� Condition 2. Each subsequent set i + 1 contains all points of the
previous set i . Such sets are called nested.

There are many ways to construct the sets of points, satisfying
Conditions 1 and 2.

As an example, let us consider grid points
n
�1, �1p

2
, 0, 1p

2
, 1
o
in the

interval [�1, 1] and create 3 nested sets of points:
i = 1 : S1 = f0g;
i = 2 : S2 = f�1, 0, 1g;
i = 3 : S3 =

n
�1, �1p

2
, 0, 1p

2
, 1
o
.
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Extrema of Chebyshev polynomials
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Conventional Smolyak grid using nested sets

Tensor products of unidimensional nested sets

i2 = 1 i2 = 2 i2 = 3

Si1 nSi2 0 �1, 0, 1 �1, �1p
2
, 0, 1p

2
, 1

i1 = 1 0 (0, 0) (0,�1) , (0, 0) , (0, 1) (0,�1) , (0, �1p
2
), (0, 0) , (0, 1p

2
), (0, 1)

i1 = 2
�1
0
1

(�1, 0)
(0, 0)
(1, 0)

(�1,�1) , (�1, 0) , (�1, 1)
(0,�1) , (0, 0) , (0, 1)
(1,�1) , (1, 0, ) , (1, 1)

(�1,�1) , (�1, �1p
2
), (�1, 0) , (�1, 1p

2
), (�1, 1)

(0,�1) , (0, �1p
2
), (0, 0) , (0, 1p

2
), (1, 0)

(1,�1), (1, �1p
2
), (1, 0) ,

�
1, 1p

2

�
(1, 1)

i1 = 3

�1
�1p
2
0
1p
2
1

(�1, 0)�
�1p
2
, 0
�

(0, 0)�
1p
2
, 0
�

(1, 0)

.

(�1,�1) , (�1, 0) , (�1, 1)
( �1p

2
,�1), ( �1p

2
, 0), ( �1p

2
, 1)

(0,�1) , (0, 0) , (1, 0)
( 1p

2
,�1), ( 1p

2
, 0), ( 1p

2
, 1)

(1,�1), (1, 0) , (1, 1)

(�1,�1) , (�1, �1p
2
), (�1, 0) , (�1, 1p

2
), (�1, 1)

( �1p
2
,�1), ( �1p

2
, �1p

2
), ( �1p

2
, 0), ( �1p

2
, 1p

2
), ( �1p

2
, 1)

(0,�1) , (0, �1p
2
), (0, 0) , (0, 1p

2
), (1, 0)

( 1p
2
,�1), ( 1p

2
, �1p

2
), ( 1p

2
, 0), ( 1p

2
, �1p

2
), ( 1p

2
, 1)

(1,�1), (1, �1p
2
), (1, 0) ,

�
1, 1p

2

�
(1, 1)
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Conventional Smolyak grid using nested sets

Smolyak sparse grid

Smolyak (1963) rule used to select tensor products:

d � i1 + i2 � d + µ,

where µ 2 f0, 1, 2, ...g is the approximation level, and d is the
dimensionality (in our case, d = 2).

In terms of the above table, the sum of indices of a column i1 and a
raw i2, must be between d and d + µ.

Let Hd ,µ denote the Smolyak grid for a problem with dimensionality
d and approximation level µ.
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Conventional Smolyak grid using nested sets

Smolyak sparse grid: d = 2.
If µ = 0 =) 2 � i1 + i2 � 2. The only cell that satis�es this
restriction is i1 = 1 and i2 = 1 =) the Smolyak grid has just one
grid point

H2,0 = f(0, 0)g .
If µ = 1 =) 2 � i1 + i2 � 3. The 3 cells that satisfy this restriction:
(a) i1 = 1, i2 = 1; (b) i1 = 1, i2 = 2; (c) i1 = 2, i2 = 1, and the
corresponding 5 Smolyak grid points are

H2,1 = f(0, 0) , (�1, 0) , (1, 0) , (0,�1) , (0, 1)g .
If µ = 2 =) 2 � i1 + i2 � 4. There are 6 cells satisfy this restriction
=) 13 Smolyak grid points:

H2,2 = f(�1, 1) , (0, 1) , (1, 1) , (�1, 0) , (0, 0) , (1, 0) , (�1,�1) ,

(0,�1) , (1,�1) , (�1p
2
, 0), (

1p
2
, 0), (0,

�1p
2
), (0,

1p
2
)

�
.
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Conventional Smolyak polynomials using nested sets

Let Pd ,µ denote a Smolyak polynomial function in dimension d , with
approximation level µ,

Pd ,µ (x1, ..., xd ; b)

= ∑
max(d ,µ+1)�ji j�d+µ

(�1)d+µ�ji j
�

d � 1
d + µ� ji j

�
pji j (x1, ..., xd ) ,

where pji j (x1, ..., xd ) is the sum of pi1,...,id (x1, ..., xd ) with i1 + ...+ id = ji j
de�ned as

pi1,...,id (x1, ..., xd ) =
m(i1)

∑
`1=1

...
m(id )

∑
`d=1

b`1...`d ψ`1 (x1) � � �ψ`d (xd ) ,

where m (i1) , ...,m (id ) = number of basis functions in dimensions 1, ..., d ;
m (i) � 2i�1 + 1 for i � 2 and m (1) � 1; ψ`1 (x1) , ...,ψ`d (xd ) =
unidimensional basis functions; `d = 1, ...,m (id ); and b`1...`d are polynomial
coe¢ cients.
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Ine¢ ciency of conventional Smolyak interpolation

Ine¢ ciency: First, we create a list of tensor products with many
repeated elements and then, we eliminate the repetitions.
Repetitions of grid points.

H2,1: (0, 0) is listed 3 times =) must eliminate 2 grid points out of 7.
H2,2: must eliminate 12 repeated points out of 25 points.
But grid points must be constructed just once (�xed cost), so
repetitions are not so important for the cost.

Repetitions of basis functions.
P2,1 lists 7 basis functions from sets f1g, f1,ψ2 (x) ,ψ3 (x)g,
f1,ψ2 (y) ,ψ3 (y)g and eliminates 2 repeated functions f1g by
assigning a weight (�1) to pj2j.
P2,2: must eliminate 12 repeated basis functions out of 25.
Smolyak polynomials must be constructed many times (in every grid
point, integration node and time period) and each time we su¤er from
repetitions.

The number of repetitions increases in µ and d =) important
for high-dimensional applications.
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Smolyak method with Lagrange interpolation

We now present an alternative variant of the Smolyak method.

First, instead of nested sets, we use disjoint sets, which allows us to
avoid repetitions.

Second, we �nd the coe¢ cients using Lagrange-style interpolation.
This technique works for any basis function and not necessarily
orthogonal ones. Most of the computations can be done up-front
(precomputed).

Our version of the Smolyak method will be more simple and intuitive
and easier to program.
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Step 1. Smolyak grid using disjoint sets

Unidimensional grid points using disjoint sets

We construct the Smolyak grid using disjoint sets.

We consider grid points
n
�1, �1p

2
, 0, 1p

2
, 1
o
in the interval [�1, 1]

and create 3 unidimensional sets of elements (grid points), A1, A2,
A3, which are disjoint, i.e., Ai \ Aj = f?g for any i and j .
i = 1 : A1 = f0g;
i = 2 : A2 = f�1, 1g;
i = 3 : A3 =

n
�1p
2
, 1p

2

o
.
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Step 1. Smolyak grid using disjoint sets

Tensor products of unidimensional disjoint sets of points

i2 = 1 i2 = 2 i2 = 3

Ai1 nAi2 0 �1, 1 �1p
2
, 1p

2

i1 = 1 0 (0, 0) (0,�1) , (0, 1)
�
0, �1p

2

�
,
�
0, 1p

2

�

i1 = 2
�1
1

(�1, 0)
(1, 0)

(�1,�1) , (�1, 1)
(1,�1) , (1, 1)

�
�1, �1p

2

�
,
�
�1, 1p

2

��
1, �1p

2

�
,
�
1, 1p

2

�

i1 = 3
�1p
2
1p
2

�
�1p
2
, 0
��

1p
2
, 0
� �

�1p
2
,�1

�
,
�
�1p
2
, 1
��

1p
2
,�1

�
,
�
1p
2
, 1
� �

�1p
2
, �1p

2

�
,
�
�1p
2
, 1p

2

��
1p
2
, �1p

2

�
,
�
1p
2
, 1p

2

�

We select elements that belong to the cells with the sum of indices of a column
and a row, i1 + i2, between d and d + µ. This leads to the same Smolyak grids
as before. However, in our case, no grid points are repeated.
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Smolyak grid using disjoint sets

Smolyak sparse grid

We use the same Smolyak rule for constructing multidimensional grid
points

d � i1 + i2 � d + µ

That is, we select elements that belong to the cells in the above table
for which the sum of indices of a column and a row, i1 + i2, is
between d and d + µ.

This leads to the same Smolyak grids H2,0, H2,1 and H2,2 as under
the construction built on nested sets. However, in our case, no grid
points are repeated.
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Step 2. Smolyak polynomials using disjoint sets

Disjoint sets of basis functions

The same construction as the one we used for constructing the grid points.

i = 1 : A1 = f1g;
i = 2 : A2 = fψ2(x),ψ3(x)g;
i = 3 : A3 = fψ4(x),ψ5(x)g.
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Step 2. Smolyak polynomials using disjoint sets

Tensor products of unidimensional disjoint sets of basis functions

i2 = 1 i2 = 2 i2 = 3

Ai1 nAi2 1 ψ2 (y ) ,ψ3 (y ) ψ4 (y ) ,ψ5 (y )

i1 = 1 1 1 ψ2 (y ) ,ψ3 (y ) ψ4 (y ) ,ψ5 (y )

i1 = 2
ψ2 (x )
ψ3 (x )

ψ2 (x )
ψ3 (x )

ψ2 (x )ψ2 (y ) ,ψ2 (x )ψ3 (y )
ψ3 (x )ψ2 (y ) ,ψ3 (x )ψ3 (y )

ψ2 (x )ψ4 (y ) ,ψ2 (x )ψ5 (y )
ψ3 (x )ψ4 (y ) ,ψ3 (x )ψ5 (y )

i1 = 3
ψ4 (x )
ψ5 (x )

ψ4 (x )
ψ5 (x )

ψ4 (x )ψ2 (y ) ,ψ4 (x )ψ3 (y )
ψ5 (x )ψ2 (y ) ,ψ5 (x )ψ3 (y )

ψ4 (x )ψ4 (y ) ,ψ4 (x )ψ5 (y )
ψ5 (x )ψ4 (y ) ,ψ5 (x )ψ5 (y )

For example, for µ = 1, we get
P2,1 (x , y ; b) = b11 + b21ψ2(x) + b31ψ3(x) + b12ψ2(y) + b13ψ3(y).
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Step 3. Lagrange-style interpolation for �nding coe¢ cients

Simply �nd the coe¢ cients so that a polynomial with M basis
functions passes through M given grid points.
Let f : [�1, 1]d ! R be a smooth function.

Let P (�; b) be a polynomial function, P (x ; b) =
M

∑
n=1
bnΨn (x), where

Ψn : [�1, 1]d ! R is a d -dimensional basis function; b � (b1, ..., bM ) is
a coe¢ cient vector.

We construct a set of M grid points fx1, ..., xMg within [�1, 1]d , and we
compute b so that the true function, f , and its approximation, P (�; b)
coincide in all grid points:

24 f (x1)
� � �

f (xM )

35=
24 bf (x1; b)

� � �bf (xM ; b)
35=

�Bz }| {264 Ψ1 (x1) � � � ΨM (x1)

� � � . . . � � �
Ψ1 (xM ) � � � ΨM (xM )

375�
24 b1
� � �
bM

35 .
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Lagrange-style interpolation

Provided that the matrix of basis functions B has full rank, we have a
system of M linear equations with M unknowns that admits a unique
solution for b24 b1

� � �
bM

35 =
264 Ψ1 (x1) � � � ΨM (x1)

� � � . . . � � �
Ψ1 (xM ) � � � ΨM (xM )

375
�1 24 f (x1)

� � �
f (xM )

35 .
By construction, approximation P (�; b) coincides with true function f
in all grid points, i.e., bf (xn; b) = f (xn) for all xn 2 fx1, ..., xMg.
For orthogonal basis functions, matrix B is well-conditioned.
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Lagrange-style interpolation

Example: d = 2 and µ = 1.
Just compute 5 coe¢ cients in Smolyak polynomial:
P2,1 (x , y ; b) = b11 + b21x + b31

�
2x2�1

�
+ b12y + b13

�
2y2�1

�
to match

function f in 5 Smolyak grid points f(0, 0) , (�1, 0) , (1, 0) , (0,�1) , (0, 1)g266664
b11
b21
b31
b12
b13

377775 =

266664
1 0 �1 0 �1
1 �1 1 0 �1
1 1 1 0 �1
1 0 �1 �1 1
1 0 �1 1 1

377775
�1

�

266664
f (0, 0)
f (�1, 0)
f (1, 0)
f (0,�1)
f (0, 1)

377775

=

26666664

f (�1,0)+f (1,0)+f (0,�1)+f (0,1)
4

�f (�1,0)+f (1,0)
2

� f (0,0)
2 + f (�1,0)+f (1,0)

4
�f (0,�1)+f (0,1)

2

� f (0,0)
2 + f (0,�1)+f (0,1)

4

37777775 .
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Anisotropic grid

The conventional Smolyak method treats all dimensions
symmetrically: it uses the same number of grid points and basis
functions for all variables.

In economic applications, it may be of value to give di¤erent
treatments to di¤erent variables.

Why?

� Decisions functions may have more curvature in some variables than in
others.

� Some variables may have a larger range of values than the others.
� Some variables may be more important than the others.
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Anisotropic grid

Let µi be an approximation level in dimension i .

Let µ =
�

µ
1
, ..., µd

�
.

Let µmax = max
n

µ
1
, ..., µd

o
Note that µj = i

max
j � 1 where imaxj is the maximum index of the sets

considered for dimension j .

Smolyak grid is called asymmetric (anisotropic) if there is at least one
dimension j such that ij 6= ik for 8k 6= j .

Hd ,
�

µ
1
,...,µd

�
� a d-dimensional anisotropic Smolyak grid of

approximation levels µ =
�

µ
1
, ..., µd

�
.

Pd ,
�

µ
1
,...,µd

�
� the corresponding Smolyak polynomial.
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Tensor products of sets of unidimensional elements

i2 = 1 i2 = 2

Ai1 nAi2 0 �1, 1

i1 = 1 0 (0, 0) (0,�1) , (0, 1)

i1 = 2
�1
1

(�1, 0)
(1, 0)

(�1,�1) , (�1, 1)
(1,�1) , (1, 1)

i1 = 3
�1p
2
1p
2

�
�1p
2
, 0
��

1p
2
, 0
� �

�1p
2
,�1

�
,
�
�1p
2
, 1
��

1p
2
,�1

�
,
�
1p
2
, 1
�

i1 = 4

�
p
2+
p
2

2
�
p
2�
p
2

2p
2�
p
2

2p
2+
p
2

2

�
�
p
2+
p
2

2 , 0
�

�
�
p
2�
p
2

2 , 0
�

�p
2�
p
2

2 , 0
�

�p
2+
p
2

2 , 0
�

�
�
p
2+
p
2

2 ,�1
�
,

�
�
p
2+
p
2

2 , 1
�

�
�
p
2�
p
2

2 ,�1
�
,

�
�
p
2�
p
2

2 , 1
�

�p
2�
p
2

2 ,�1
�
,

�p
2�
p
2

2 , 1
�

�p
2+
p
2

2 ,�1
�
,

�p
2+
p
2

2 , 1
�
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Anysotropic Smolyak sets

The Smolyak rule: select elements that satisfy

d � i1 + i2 � d + µmax

If µ = (1, 0), then µmax = 1 and 2 � i1 + i2 � 3. The 3 cells that
satisfy this restriction are (a) i1 = 1, i2 = 1; (b) i1 = 1, i2 = 2; (c)
i1 = 2, i2 = 1,

H2,f1,0g = f(0, 0) , (�1, 0) , (1, 0)g .
If µ = (2, 1), then µmax = 2 and 2 � i1 + i2 � 4, there are 5 cells
that satisfy this restriction (a) i1 = 1, i2 = 1; (b) i1 = 1, i2 = 2; (c)
i1 = 2, i2 = 1; (d) i1 = 1, i2 = 3; (e) i1 = 2, i2 = 2; and 11 points:

H2,f2,1g = f(�1, 1) , (0, 1) , (1, 1) , (�1, 0) , (0, 0) , (1, 0) , (�1,�1) ,

(0,�1) , (1,�1) , (�1p
2
, 0), (

1p
2
, 0)
�
.

If µ = (3, 1), then µmax = 3 and 2 � i1 + i2 � 5, there are 19 points.
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Anisotropic grids: an illustration
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Results for the representative agent model

CRRA utility function: u (c) = c1�γ�1
1�γ ;

Cobb-Douglas production function: f (k) = kα, with α = 1/3;
AR(1) process: ln θ0 = ρ ln θ + σε, with ρ = 0.95

Discount factor: β = 0.99.

Benchmark values: δ = 1, γ = 1 and σ = 0.01.

Then, we consider variations in δ, γ and σ one-by-one holding the
remaining parameters at the benchmark values.

δ = f0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1g ,
γ = f1, 5, 10, 15, 20g ,
σ = f0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05g .
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Conventional (isotropic) sparse grids under di¤erent
approximation levels

Consider approximation levels µ = 1, 2, 3, 4.
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Anisotropic sparse grids

Consider 2 anisotropic cases: µ = (3, 1) and µ = (1, 3).

There are 9 elements in the �rst dimension and 3 elements in the
second dimension =) 15 grid points and 15 basis functions.
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Adaptive Domain: Conventional hypercube vs. a
hypercube obtained after the change of variables
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Smolyak grid on principal components
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Adaptive domain
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Multicountry model

max
fcht ,kht+1gh=1,...,Nt=0,...,∞

E0
N

∑
h=1

τh

 
∞

∑
t=0

βtuh
�
cht
�!

s.t.
N

∑
h=1

cht =
N

∑
h=1

h
θht f

h
�
kht
�
+ kht (1� δ)� kht+1

i
,

ln θht = ρ ln θht�1 + εht ,

cht , k
h
t , a

h
t , u

h, f h and τh = consumption, capital, productivity level,
utility function, production function, welfare weight of a country h;
εht � εt +vh

t , εt � N (0, σ) is a common-for-all-countries shocks,
vh
t � N (0, σ) is a country-speci�c productivity shocks;

Thus,
�
ε1t , ..., ε

N
t

�> � N (0N ,Σ), with 0N 2 RN ,

Σ =

0@ 2σ2 ... σ2

... ... ...
σ2 ... 2σ2

1A 2 RN�N .
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Results for the multicountry model
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Conclusion

The Smolyak method is designed to deal with high-dimensional problems,
but its cost still grows rapidly with dimensionality, especially if we target a
high quality of approximation.
We propose a variant of the Smolyak method that has a better performance
(lower cost and higher accuracy).

We introduce formula for Smolyak polynomials that avoids repetitions
and eliminates unnecessary function evaluations.
We propose a simple Lagrange-style technique for �nding the
polynomial coe¢ cients.
We develop an anisotropic version of the Smolyak grid that takes into
account an asymmetric structure of variables in economic model.
As a solution domain, we use a minimum hypercube that encloses the
high-probability set of a given economic model.

The above four improvements are related to Smolyak interpolation. Our last
improvement is concerned with an iterative procedure for solving dynamic
economic models. We propose to use �xed-point iteration instead of time
iteration.
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Computer codes

"Smolyak_Anisotropic_JMMV_2014.zip"

Smolyak method with anisotropic grid for one and multi-country
models

Smolyak method operating on a hypercube enclosing the ergodic set
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GSSA, EDS and cluster grids
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Hypercube versus ergodic set

Conventional projection methods including the Smolyak method
operate on exogenously given hypercube.

However, many areas of the hypercube have low probability of
occurrence - we might not need to know the solution in low
probability areas.

Stochastic simulation methods construct the solution on a set of
simulated points where the solution "lives".

This can saves on cost a low!
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Illustrative example: a representative-agent model

The representative-agent neoclassical stochastic growth model:

max
fkt+1,ctg∞

t=0

E0
∞

∑
t=0

βtu (ct )

s.t. ct + kt+1 = (1� δ) kt + θt f (kt ) ,

ln θt+1 = ρ ln θt + εt+1, εt+1 � N
�
0, σ2

�
,

where initial condition (k0, θ0) is given;
u (�) = utility function; f (�) = production function;
ct = consumption; kt+1 = capital; θt = productivity;
β = discount factor; δ = depreciation rate of capital;
ρ = autocorrelation coe¢ cient of the productivity level;
σ = standard deviation of the productivity shock.
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Advantage of stochastic simulation method

Advantage of stochastic simulation method: "Grid" is adaptive: we
solve the model only in the area of the state space that is visited in
simulation.
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Reduction in cost in a 2-dimensional case

How much can we save on cost using the ergodic-set domain
comparatively to the hypercube domain?

Suppose the ergodic set is a circle (it was an ellipse in the �gure).

In the 2-dimensional case, a circle inscribed within a square occupies
about 79% of the area of the square.

The reduction in cost is proportional to the shaded area in the �gure.

It does not seem to be a large gain.
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Reduction in cost in a d-dimensional case

In a 3-dimensional case, the gain is larger (a volume of a sphere of
diameter 1 is 52% of the volume of a cube of width 1)

In a d-dimensional case, the ratio of a hypersphere�s volume to a
hypercube�s volume

Vd =

8<: (π/2)
d�1
2

1�3�...�d for d = 1, 3, 5...
(π/2)

d
2

2�4�...�d for d = 2, 4, 6...
.

Vd declines very rapidly with dimensionality of state space. When
d = 10 ) Vd = 3 � 10�3 (0.3%). When d = 30 ) Vd = 2 � 10�14.
We face a tiny fraction of cost we would have faced on the hypercube.
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Shortcomings of stochastic simulation approach

1 Simulated points are not an e¢ cient choice for constructing a grid:
1 there are many closely situated and hence, redundant points;
2 there are points outside the high-probability area.

2 Simulated points are not an e¢ cient choice for the purpose of
integration �accuracy of Monte Carlo integration is low, e.g.,
Parameterized Expectation Algorithm (PEA) by den Haan and Marcet
(1990).

Et [yt+1] � y t+1 �
n

∑
τ=1
yτ+1

Suppose std (yτ+1) = 1%

n = 1 draws ) std (y t+1) = 1%

n = 100 draws ) std (y t+1) = 0.1%

n = 10, 000 draws ) std (y t+1) = 0.01%

Monte Carlo method has a slow,
p
n, rate of convergence.

Maliar and Maliar (2017) Part 1: State-Dependent Models CEF 2017 Workshop 60 / 147



Ine¢ ciency of Monte Carlo integration

Why is Monte Carlo integration ine¢ cient?

Because we compute expectations from noisy simulated data as do
econometricians who do not know true density of DGP.

But we do know the true density of DGP (we de�ne productivity
ourselves, ln θt+1 = ρ ln θt + εt+1).

We can compute integrals far more accurately using quadrature
methods based on true density of DGP!
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Generalized Stochastic Simulation Algorithm
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Stochastic simulation methods and their shortcomings

The aim of GSSA is to improve the performance of stochastic
simulation methods.

The regression step requires

to �t an approximating function to the simulated data (regression);
to evaluate conditional expectations (integration).

We show that both regression and integration have two problems:

Problem 1: In regression, polynomial terms are highly correlated
(multicollinearity), and the standard LS technique fails ) numerical
instability.
Problem 2: Monte Carlo integration is very inaccurate ) the overall
accuracy of solutions is low.
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With GSSA, we correct the above two shortcomings

We stabilize the stochastic simulation procedure:

we build the regression step on approximation methods designed for
dealing with multicollinearity

We attain high accuracy of solutions:

we generalize the stochastic simulation algorithm to include accurate
Gauss Hermite quadrature and monomial integration methods

The generalized stochastic simulation algorithm (GSSA) is

numerically stable
comparable in accuracy to most accurate methods in the literature
tractable in problems with high dimensionality (hundreds of state
variables)
very simple to program
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Addressing Problem 1: Attaining numerical stability

1 As an approximating function, we use ordinary polynomial Ψ (k, a; b)
= b0 + b1 ln kt + b2 ln at + ...+ bn (ln at )

L.
2 We use approximation methods that can handle collinear data and
dampen movements in b.

LS using SVD, Tikhonov regularization;
Least absolute deviations (LAD) methods (primal and dual linear
programming problems);
Principal components (truncated SVD) method.

3 Other factors that can a¤ect numerical stability of GSSA:

Data normalization.
The choice of a family of basis functions.
The choice of policy functions to parameterize.
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GSSA algorithm I

Stage 1.

Initialization:

Choose an initial guess b(1).
Choose a simulation length, T , draw a sequence of productivity shocks,
fεtgt=1,...,T , and compute fatgt=1,...,T+1 from the process for at .
Choose the initial state (k0, a0) for simulations.

Step 1. At iteration p, use b(p) to simulate the model T periods
forward,

kt+1 = bK �kt , at ; b(p)� ,
ct = (1� δ) kt + at f (kt )� kt+1.
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GSSA algorithm II

Step 2. For t = 0, ...,T � 1, de�ne yt to be an approximation of the
conditional expectation using J integration nodes and weights,
fεt+1,jgj=1,...,J and fωt ,jgj=1,...,J , respectively:

yt =
J

∑
j=1

�
ωt ,j �

�
β
u0 (ct+1,j )
u0 (ct )

�
1� δ+ at+1,j f 0 (kt+1)

�
kt+1

��
,

(1)
where ct+1,j , the value of ct+1 if the innovation in productivity is
εt+1,j , is de�ned for j = 1, ..., J by

at+1,j � aρ
t exp (εt+1,j ) ,

kt+2,j � bK �bK �kt , at ; b(p)� , aρ
t exp (εt+1,j ) ; b

(p)
�
,

ct+1,j � (1� δ) kt+1 + at+1,j f (kt+1)� kt+2,j .
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GSSA algorithm III

Step 3. Find bb that minimizes the errors εt in the regression equation
according to some norm, k�k,

yt = bK (kt , at ; b) + εt . (2)

Step 4: Check for convergence and end Stage 1 if

1
T

T

∑
t=1

�����k
(p)
t+1 � k

(p+1)
t+1

k (p)t+1

����� < v, (3)

where
n
k (p)t+1

oT
t=1

and
n
k (p+1)t+1

oT
t=1

are the capital series obtained on

iterations p and p + 1, respectively.
Step 5. Compute b(p+1) for iteration (p + 1) using �xed-point
iteration

b(p+1) = (1� ξ) b(p) + ξbb, (4)

where ξ 2 (0, 1] is a damping parameter. Go to Step 1.
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GSSA algorithm IV

Stage 2.

Construct a new set of T test points fkτ, aτgT
test

τ=0 for testing the
accuracy of the solution obtained in Stage 1 (this can be a set of
simulation points constructed with a new random draw or some
deterministic set of points).
Re-write the Euler equation at (kτ, aτ) in a unit-free form,

R (kτ, aτ) � Eτ

�
β
u0 (cτ+1)

u0 (cτ)

�
1� δ+ aτ+1f 0 (kτ+1)

��
� 1. (5)

For each point (kτ, aτ), compute R (kτ, aτ) by using a high-quality
integration method in evaluating the conditional expectation in (5).
If the economic signi�cance of these errors is small, we accept the
candidate b.
Otherwise, we tighten up Stage 1 (use a more �exible approximating
function, increase simulation length, improve integration method,
choose more demanding norm) when computing bb in Step 3.
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Methodology and parameterization

Production function: f (kt ) = kα
t with α = 0.36.

Utility function: u (ct ) =
c1�γ
t �1
1�γ with γ 2 f0.1, 1, 10g.

Process for shocks: ρ = 0.95 and σ = 0.01.

Discount factor: β = 0.99.

Depreciation rate: δ = 1 and δ = 0.02.

Under γ = 1 and δ = 1 =) closed-form solution.

Accuracy is measured by an Euler-equation error,

R (kt , at ) � Et

"
β
c�γ
t+1

c�γ
t

�
1� δ+ αat+1kα�1

t+1

�#
� 1,

expressed in log10 units.
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Results for the model with the closed-form solution

Full depreciation of capital, δ = 1.
Rmean CPU Rmean CPU Rmean CPU

Polyn. OLS, Ordinary OLS, Ordinary OLS, Hermite
degree Unnormalized Normalized Unnormalized

1st -3.52 0.8 sec -3.52 1 sec -3.52 1 sec
2nd -5.46 3.1 sec -5.46 3 sec -5.46 4 sec
3rd - - -6.84 5 sec -6.84 6 sec
4th - - - - -7.94 8 sec
5th - - - - -9.09 10 sec

Ordinary, LS-SVD Ordinary, LAD-PP Ordinary, RLS-Tikh.
Normalized Normalized η = 10�7

1st -3.52 1 sec -3.52 16 sec -3.52 1 sec
2nd -5.46 3 sec -5.55 1.5 min -5.46 3 sec
3rd -6.84 5 sec -6.97 4.1 min -5.85 4 sec
4th -7.94 6 sec -8.16 6.4 min -6.12 7 sec
5th -9.12 10 sec -9.10 9.3 min -6.22 11 sec
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Results for the model without a closed-form solution

Partial depreciation of capital, δ = 0.02.

Rmean CPU

Polyn. MC(1)
degree T = 10, 000

1st -4.26 1 sec
2nd -4.42 11 sec
3rd -4.32 25 sec
4th -4.31 47 sec
5th -4.23 80 sec

We attain stability but now high-degree polynomials do not lead to
more accurate solution. Why?
Recall that low accuracy of Monte Carlo integration restricts the
overall accuracy of solutions, e.g., PEA by den Haan and Marcet
(1990).

Maliar and Maliar (2017) Part 1: State-Dependent Models CEF 2017 Workshop 72 / 147



Addressing Problem 2: Deterministic integration methods

Our GSSA relies on accurate Gauss Hermite quadrature integration

Z
RN
g (ε)w (ε) dε �

J

∑
j=1

ωjg (εj ) ,

where fεjgJj=1 = integration nodes, fωjgJj=1 = integration weights.

Example

a) A two-node Gauss-Hermite quadrature method, Q (2), uses nodes
ε1 = �σ, ε2 = σ and weights ω1 = ω2 =

1
2 .

b) A three-node Gauss-Hermite quadrature method, Q (3), uses nodes

ε1 = 0, ε2 = σ
q

3
2 , ε3 = �σ

q
3
2 and weights ω1 =

2
p

π
3 ,

ω2 = ω3 =
p

π
6 .

c) A one-node Gauss-Hermite quadrature method, Q (1), uses a zero
node, ε1 = 0, and a unit weight, ω1 = 1.
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Quadrature integration in the studied model

For t = 0, ...,T � 1, we approximation the conditional expectation as

yt =
J

∑
j=1

�
ωj �

�
βu0 (ct+1,j )

�
1� δ+ at+1,j f 0 (kt+1)

��	
,

where ct+1,j , the value of ct+1 if the innovation in productivity is εj , is
de�ned for j = 1, ..., J by

at+1,j � aρ
t exp (εj ) ,

ct+1,j � F
�
kt+1, a

ρ
t exp (εj ) ; b

(p)
�
.

where fεjgj=1,...,J and fωjgj=1,...,J are J integration nodes and weights,
respectively.
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Results for the model with partial depreciation of capital

Rmean CPU Rmean CPU Rmean CPU

Polyn. MC(1) MC(2000) MC(1)
degree T = 10, 000 T = 10, 000 T = 100, 000

1st -4.26 1 sec -4.40 20.6 min -4.39 4 sec
2nd -4.42 11 sec -6.04 28.5 min -4.87 1.3 min
3rd -4.32 25 sec -6.15 36.6 min -4.86 3.1 min
4th -4.31 47 sec -6.08 55.6 min -4.72 5.7 min
5th -4.23 80 sec -6.07 1.27 h -4.71 10.4 min

Q(1) Q(2) Q(10)
T = 100 T = 10, 000 T = 10, 000

1st -4.36 3 sec -4.36 16 sec -4.36 20 sec
2nd -6.05 4 sec -6.13 27 sec -6.13 34 sec
3rd -6.32 5 sec -7.48 35 sec -7.48 44 sec
4th -6.24 6 sec -8.72 44 sec -8.72 54 sec
5th -6.04 7 sec -8.91 51 sec -8.91 63 sec

RLS-TSVD with κ = 107
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Multi-dimensional problems: Gauss Hermite product rules

In multi-dimensional problem, we can use Gauss Hermite product rules.

Example

Let εht+1 � N
�
0, σ2

�
, h = 1, 2, 3 be uncorrelated random variables. A

two-node Gauss-Hermite product rule, Q (2), (obtained from the two-node
Gauss-Hermite rule) has 23 nodes, which are as follows:

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8
ε1t+1,j σ σ σ σ �σ �σ �σ �σ

ε2t+1,j σ σ �σ �σ σ σ �σ �σ

ε3t+1,j σ �σ σ �σ σ �σ σ �σ

where weights of all nodes are equal, ωt ,j = 1/8 for all j .

The cost of product rules increases exponentially, 2N , with the number of
exogenous state variables, N. Such rules are not practical when the
dimensionality is high.
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Deterministic integration

Types of nodes: the center; the circles (6 centers of faces); the stars (12
centers of edges); the squares (8 vertices).
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Monomial non-product integration formulas

Monomial formulas are a cheap alternative for multi-dimensional problem
(there is a variety of such formulas di¤ering in accuracy and cost).

Example

Let εht+1 � N
�
0, σ2

�
, h = 1, 2, 3 be uncorrelated random variables.

Consider the following monomial (non-product) integration rule with 2 � 3
nodes:

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
ε1t+1,j σ

p
3 �σ

p
3 0 0 0 0

ε2t+1,j 0 0 σ
p
3 �σ

p
3 0 0

ε3t+1,j 0 0 0 0 σ
p
3 �σ

p
3

where weights of all nodes are equal, ωt ,j = 1/6 for all j .

Monomial rules are practical for problems with very high dimensionality,
for example, with N = 100, this rule has only 2N = 200 nodes.
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The multi-country model

The planner maximizes a weighted sum of N countries�lifetime utilities

maxn
fcht ,kht+1gNh=1

o∞

t=0

E0
N

∑
h=1

λh

 
∞

∑
t=0

βtuh
�
cht
�!

subject to

N

∑
h=1

cht +
N

∑
h=1

kht+1 =
N

∑
h=1

kht (1� δ) +
N

∑
h=1

aht f
h
�
kht
�
,

where λh is country h�s welfare weight.
Productivity of country h follows the process

ln aht+1 = ρ ln aht + εht+1,

where εht+1 � ςt+1 + ςht+1 with ςt+1 � N
�
0, σ2

�
is identical for all

countries and ςht+1 � N
�
0, σ2

�
is country-speci�c.
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Results for the multi-country model

Numb. Numb. Rmean CPU Rmean CPU
of Polyn. of RLS-Tikh.,η = 10�5 RLS-TSVD, κ = 107

countr. degree coe¤. MC(1), T = 10, 000 M2, T = 1000

1st 5 -4.70 4.2 min -4.65 37 sec
2nd 15 -4.82 19.3 min -6.01 6.8 min

N=2 3rd 35 -4.59 57 min -7.09 10.4 min
4th 70 -4.57 2.6 hours -7.99 16.3 min
5th 126 -4.53 6.8 hours -8.00 34.8 min

RLS-Tikh.,η = 10�5 RLS-Tikh., η = 10�5

MC(1), T = 10, 000 Q(1), T = 1000

N=20 1st 41 -4.55 6.5 min -4.75 56 sec
2nd 861 -3.88 2.1 hours -5.40 18 min

N=200 1st 401 -3.97 37.2 min -4.59 16.8 min

When N=200, for RLS-Tikh.,Q(1), we use T = 2000

Maliar and Maliar (2017) Part 1: State-Dependent Models CEF 2017 Workshop 80 / 147



Epsilon Distinguishable Set and Cluster Grid Algorithms

Maliar and Maliar (2017) Part 1: State-Dependent Models CEF 2017 Workshop 81 / 147



Merging projection and stochastic simulation

EDS and CGA algorithms merge stochastic simulation and projection
approaches.

What do we do?

Similar to stochastic simulation approach: use simulation to
identify and approximate the ergodic set.

Similar to projection approach: construct a �xed grid and use
quadrature integration to accurately solve the model on that grid.

We use integration and optimization methods that are tractable in
high-dimensional problems: non-product monomial integration
formulas and derivative-free solvers.
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Epsilon-distinguishable set (EDS) algorithm

The key novel piece of our analysis

The EDS grid construction:

we select an ε-distinguishable subset of simulated points that covers
the support of the ergodic measure roughly uniformly.

"ε-distinguishable set (EDS)" = a set of points situated at the
distance at least ε from one another, where ε > 0 is a parameter.
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A grid of points covering support of the ergodic measure

An illustration of an ε-distinguishable set.
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A class of stochastic processes

Suppose we know the solution to the model.
A class of discrete-time stochastic processes:

xt+1 = ϕ (xt , εt+1) , t = 0, 1, ...,

ε 2 E � Rp = vector of p independent and identically distributed shocks;
x 2 X � Rd = vector of d (exogenous and endogenous) state variables;
x is endowed with its relative Borel σ-algebra denoted by X.

Example, kt+1 = K (kt , θt ) and θt+1 = θ
ρ
t exp (εt+1).

Assumption 1. There exists a unique ergodic set A� and the associated
ergodic measure µ.
Assumption 2. The ergodic measure µ admits a representation in the
form of a density function g : X ! R+ such that

R
A g (x) dx = µ (A) for

every A � X.
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A two-step EDS technique

A two-step procedure for forming a discrete approximation to the ergodic
set.

1 We identify an area of the state space that contains nearly all the
probability mass.

2 We cover this area with a �nite set of points that are roughly evenly
spaced.
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An essentially ergodic set

We de�ne a high-probability area of the state space using the level set of
the density function g .

Def. A set Aη � A� is called a η-level ergodic set if η > 0 and

Aη � fx 2 X : g (x) � ηg .

The mass of Aη under the density g (x) is equal to
p (η) �

R
g (x )�η g (x) dx .

If p (η) � 1, then Aη contains all X except for points where the
density is lowest.

In this case, Aη is called an essentially ergodic set.
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Law of iterated logarithm

LIL: The ergodic measure can be approximated by simulation.
P = random draws x1, ..., xn � Rd generated with µ : Rd ! R+.
C (P; J) = counts the number of points from P in a given J � Rd .
J = intersection of all subintervals Πd

i=1 [�∞, vi ), where vi > 0.

Proposition: (Law of iterated logarithm). For every dimensionality d and
every continuous function µ, we have

lim
n!∞

(
sup
J2J

����C (P; J)n
� µ (J)

���� �� 2n
log log n

�1/2
)
= 1, a.e.

Proof: See Kiefer (1961, Theorem 2).

That is, the empirical distribution function bµ (J) � C (P ;J )
n converges

asymptotically to the true distribution function µ (J) for every J 2 J at

the rate given by
�

2n
log log n

�1/2
.
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Multivariate kernel density estimation

(Algorithm Aη): Selection of points within an essentially ergodic set.
Step 1. Simulate xt+1 = ϕ (xt , εt+1) for T periods.
Step 2. Select each κth point to get a set P of n points x1, ..., xn 2 X � Rd .
Step 3. Estimate the density function bg (xi ) � g (xi ) for all xi 2 P.
Step 4. Remove all points for which the density is below η.

To estimate the density function bg from the simulated data, we use a
multivariate kernel algorithm

bg (x) = 1

n (2π)d/2 h
d

n

∑
i=1
exp

�
�D (x , xi )

2h
2

�
,

where h is the bandwidth parameter, and D (x , xi ) is the distance between
x and xi .

The complexity of Algorithm Aη is O
�
n2
�
because it requires to

compute pairwise distances between all the sample points.

We remove 5% of the sample which has the lowest density.

Maliar and Maliar (2017) Part 1: State-Dependent Models CEF 2017 Workshop 89 / 147



Constructing EDS

Def. Let (X ,D) be a bounded metric space. A set P ε consisting of points

x ε
1, ..., x

ε
M 2 X � Rd is called ε-distinguishable if D

�
x ε
i , x

ε
j

�
> ε for all

1 � i , j � M : i 6= j , where ε > 0 is a parameter.

(Algorithm P ε): Construction of an EDS.
Let P be a set of n point x1, ..., xn 2 X � Rd .
Let P ε begin as an empty set, P ε = f?g.
Step 1. Select xi 2 P. Compute D

�
xi , xj

�
to all xj in P.

Step 2. Eliminate from P all xj for which D
�
xi , xj

�
< ε.

Step 3. Add xi to P ε and eliminate it from P.
Iterate on Steps 1-3 until all points are eliminated from P.

Proposition: The complexity of Algorithm P ε is of order O (nM).
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Measuring distance between points

Both estimating the density and constructing an EDS requires us to
measure the distance between simulated points.

Generally, variables in economic models have di¤erent measurement
units and are correlated.

This a¤ects the distance between the simulated points and hence,
a¤ects the resulting EDS.

Therefore, prior to using Algorithm Aη and Algorithm P ε, we
normalize and orthogonalize the simulated data using Principal
Component transformation.
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Principal component transformation

Let X 2 Rn�d be simulated data normalized to zero mean and unit
variance.
Perform the singular value decomposition of X , i.e., X = UQV>,
where U 2 Rn�d and V 2 Rd�d are orthogonal matrices, and
Q 2 Rd�d is a diagonal matrix.
Perform a linear transformation of X using PC� XV .
PC=

�
PC1, ...,PCd

�
2 Rn�d are principal components (PCs) of X ,

and are orthogonal (uncorrelated), i.e.,
�
PC`

0
�>
PC` = 0 for any

`0 6= `.
Distance between two observations xi and xj is the Euclidean distance
between their PCs

D (xi , xj ) =

"
d

∑
`=1

�
PC`i � PC`j

�2#1/2

,

where PC1, ...,PCd are normalized to unit variance.
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Illustrating the EDS technique
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Cluster grid �another procedure for approximating the
ergodic set

Instead of constructing an EDS, we can use methods from cluster
analysis to select a set of representative points from a given set of
simulated points.
We partition the simulated data into clusters (groups of
closely-located points) and replace each cluster with one
representative point.
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Steps of the agglomerative hierarchical clustering algorithm

Clustering algorithm

(Algorithm Pc ): Agglomerative hierarchical clustering algorithm.
Initialization. Choose M, the number of clusters to be created.
In a zero-order partition P (0), each simulated point represents a cluster.
Step 1. Compute all pairwise distances between the clusters in a partition P (i ).
Step 2. Merge a pair of clusters with the smallest distance to obtain P (i+1).
Iterate on Steps 1 and 2. Stop when the number of clusters in the partition is M.
Represent each cluster with the closest to the cluster�s center simulated point.

As a measure of distance between two clusters, we use Ward�s measure of
distance.
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Agglomerative hierarchical clustering algorithm: an
example
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Clusters on principal components of the ergodic set
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Description of the EDS algorithm iterating on Euler
equation

Parameterize the RHS of the Euler equation by a polynomial bK (k, θ; b),
E
�

β
u0 (c 0)
u0 (c)

�
1� δ+ θ0f 0

�
k 0
��
k 0
�

� bK (k, θ; b) = b0 + b1k + b2θ + ....+ bnθL

Step 1. Simulate fkt , θtgT+1t=1 . Construct an EDS grid, fkm , θmg
M
m=1.

Step 2. Fix b � (b0, b1, b2, ..., bn). Given fkm , θmgMm=1 solve for
fcmgMm=1.
Step 3. Compute the expectation using numerical integration (quadrature
integration or monomial rules)

bk 0m � E �β
u0 (c 0m)
u0 (cm)

�
1� δ+ θ0m f

0 �k 0m�� k 0m� .
Regress bk 0m on �1, km , θm , k2m , θ2m , ..., θLm� =) get bb.
Step 4. Solve for the coe¢ cients using damping,

b(j+1) = (1� ξ) b(j) + ξbb, ξ 2 (0, 1) .Maliar and Maliar (2017) Part 1: State-Dependent Models CEF 2017 Workshop 98 / 147



Representative-agent model: parameters choice

Production function: f (kt ) = kα
t with α = 0.36.

Utility function: u (ct ) =
c1�γ
t �1
1�γ with γ 2

� 1
5 , 1, 5

	
.

Process for shocks: ln θt+1 = ρ ln θt + εt+1 with ρ = 0.95 and σ = 0.01.
Discount factor: β = 0.99.
Depreciation rate: δ = 0.025.
Accuracy is measured by an Euler-equation residual,

R (ki , θi ) � Ei

"
β
c�γ
i+1

c�γ
i

�
1� δ+ αθi+1kα�1

i+1

�#
� 1.
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Table 1. Accuracy and speed of the Euler equation EDS
algorithm in the representative-agent model

Polynomial degree Mean error Max error CPU (sec)

1st degree �4.29 �3.31 24.7
2nd degree �5.94 �4.87 0.8
3rd degree �7.26 �6.04 0.9
4th degree �8.65 �7.32 0.9
5th degree �9.47 �8.24 5.5

Target number of grid points is M = 25.
Realized number of grid points is M (ε) = 27.
Mean and Max are unit-free Euler equation errors in log10 units, e.g.,

�4 means 10�4 = 0.0001 (0.01%);

�4.5 means 10�4.5 = 0.0000316 (0.00316%).

Benchmark parameters: γ = 1, δ = 0.025, ρ = 0.95, σ = 0.01.
In the paper, also consider γ = 1/5 (low risk aversion) and γ = 5 (high
risk aversion). Accuracy and speed are similar.
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Autocorrection of the EDS grid
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Table 2: Accuracy and speed in the one-agent model:
Smolyak grid versus EDS grid

Test on a simulation Test on a hypercube
Polyn. Smolyak grid EDS grid Smolyak grid EDS grid
deg. Mean Max Mean Max Mean Max Mean Max

1st -3.31 -2.94 -4.23 -3.31 -3.25 -2.54 -3.26 -2.38
2nd -4.74 -4.17 -5.89 -4.87 -4.32 -3.80 -4.41 -3.25
3rd -5.27 -5.13 -7.19 -6.16 -5.39 -4.78 -5.44 -4.11
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Description of the EDS algorithm iterating on Bellman
equation

Parameterize the value function by a polynomial V (�) � bV (�; b):
max
k 0,c

n
u (c) + βE

hbV �k 0, θ0; b�io
� bV (k, θ; b) = b0 + b1k + b2θ + ....+ bnθL.

Step 1. Find bK corresponding to bV (�; b). Simulate fkt , θtgT+1t=1 .
Construct an EDS grid, fkm , θmgMm=1.
Step 2. Fix b � (b0, b1, b2, ..., bn). Given fkm , θmgMm=1 solve for
fcmgMm=1.
Step 3. Compute the expectation using numerical integration (quadrature
integration or monomial rules)

Vm � u (cm) + βE bV �k 0m , θ0m ; b� .
Regress Vm on

�
1, km , θm , k2m , θ

2
m , ..., θ

L
m

�
=) get bb.

Step 4. Solve for the coe¢ cients using damping,

b(j+1) = (1� ξ) b(j) + ξbb, ξ 2 (0, 1) .
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Table 3. Accuracy and speed of the Bellman equation EDS
algorithm in the representative-agent model

Polynomial degree Mean error Max error CPU (sec)

1st degree � � �
2nd degree �3.98 �3.11 0.5
3rd degree �5.15 �4.17 0.4
4th degree �6.26 �5.12 0.4
5th degree �7.42 �5.93 0.4

Target number of grid points is M = 25.
Realized number of grid points is M (ε) = 27.
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Multi-country model

The planner maximizes a weighted sum of N countries�utility functions:

maxn
fcht ,kht+1gNh=1

o∞

t=0

E0
N

∑
h=1

vh
 

∞

∑
t=0

βtuh
�
cht
�!

subject to

N

∑
h=1

cht +
N

∑
h=1

kht+1 =
N

∑
h=1

kht (1� δ) +
N

∑
h=1

θht f
h
�
kht
�
,

where vh is country h�s welfare weight.
Productivity of country h follows the process

ln θht+1 = ρ ln θht + εht+1,

where εht+1 � ςt+1 + ςht+1 with ςt+1 � N
�
0, σ2

�
is identical for all

countries and ςht+1 � N
�
0, σ2

�
is country-speci�c.
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Table 3. Accuracy and speed in the multi-country model

Polyn. M1 Q(1)
degree Mean Max CPU Mean Max CPU

N=2 1st �4.09 �3.19 44 sec �4.07 �3.19 45 sec
2nd �5.45 �4.51 2 min �5.06 �4.41 1 min
3rd �6.51 �5.29 4 min �5.17 �4.92 2 min

N=20 1st �4.21 �3.29 20 min �4.17 �3.28 3 min
2nd �5.08 �4.17 5 hours �4.83 �4.10 32 min

N=40 1st �4.23 �3.31 5 hours �4.19 �3.29 2 hours
2nd � � - �4.86 �4.48 24 hours

N=100 1st �4.09 �3.24 10 hours �4.06 �3.23 36 min
N=200 1st � � - �3.97 �3.20 2 hours

M1 means monomial integration with 2N nodes; Q(1) means quadrature
integration with one node in each dimension; Mean and Max are mean and
maximum unit-free Euler equation errors in log10 units, respectively; CPU
is running time.
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A new Keynesian (NK) model

Assumptions:

Households choose consumption and labor.

Perfectly competitive �nal-good �rms produce goods using
intermediate goods.

Monopolistic intermediate-good �rms produce goods using labor and
are subject to sticky price (á la Calvo, 1983).

Monetary authority obeys a Taylor rule with zero lower bound (ZLB).

Government �nances a stochastic stream of public consumption by
levying lump-sum taxes and by issuing nominal debt.

6 exogenous shocks and 8 state variables =) The model is large
scale (it is expensive to solve or even intractable under conventional
global solution methods that rely on product rules).
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Summary of equilibrium conditions

We have

Stochastic processes for 6 exogenous shocks.

8 endogenous equilibrium equations & 8 unknowns.

2 endogenous state variables, price dispersion and interest rate.

Thus, there are 8 (endogenous plus exogenous) state variables.
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Computational papers on ZLB

How to impose the ZLB on interest rate?

Perturbation methods do not allow us to impose the ZLB in the
solution procedure.

The conventional approach in the literature is to disregard the ZLB
when computing perturbation solutions and to impose the ZLB in
simulations when running accuracy checks (that is, whenever Rt
happens to be smaller than 1 in simulation, we set it at 1).

Christiano, Eichenbaum&Rebelo (2009)

In contrast, our global EDS method does allow to impose the ZLB
both in the solution and simulation procedures.
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Parameter values

We calibrate the model using the results in Smets and Wouters (2003,
2007), and Del Negro, Smets and Wouters (2007).

Preferences: γ = 1; ϑ = 2.09; β = 0.99
Intermediate-good production: ε = 4.45
Fraction of �rms that cannot change price: θ = 0.83
Taylor rule: φy = 0.07; φπ = 2.21; µ = 0.82
In�ation target: π� 2 f1, 1.0598g
Government to output ratio: G = 0.23
Stochastic processes for shocks:
ρu = 0.92; ρL = 0.25; ρB = 0.22; ρa = 0.95; ρR = 0.15; ρG = 0.95
σu = 0.54%; σL 2 f18.21%, 40.54%g; σB = 0.23%; σa = 0.45%;
σR = 0.28%; σG = 0.38%

We compute 1st and 2nd perturbation solutions using Dynare, and we
compute 2nd and 3rd degree EDS solutions.
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Time-series solution and EDS grid
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Table 4. Accuracy and speed in the NK model with 0%
in�ation target and 18.21% volatility of labor shock

PER1 PER2 EDS2 EDS3

CPU 0.15 24.3 4.4
Mean �3.03 �3.77 �3.99 �4.86
Max �1.21 �1.64 �2.02 �2.73
Rmin 0.9916 0.9929 0.9931 0.9927
Rmax 1.0340 1.0364 1.0356 1.0358

Fr(R�1),% 2.07 1.43 1.69 1.68
4R,% 0.17 0.09 0.05 0
4C ,% 1.00 0.19 0.12 0
4Y ,% 1.00 0.19 0.12 0
4L,% 0.65 0.33 0.16 0
4π,% 0.30 0.16 0.11 0

PER 1 and PER 2 = 1st and 2nd order Dynare solutions; EDS2 and EDS3 = 2nd and 3rd degree

EDS algorithm; Mean and Max = average and max absolute errors (in log10 units); Rmin and

Rmax = min and max R; Fr = frequency of R� 1; 4X = max di¤erence from EDS3.
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Table 5. Accuracy and speed in the NK model with 5.98%
in�ation target and 40.54% volatility of labor shock

PER1 PER2 EDS2 EDS3

CPU 0.15 22.1 12.0
Mean �2.52 �2.90 �3.43 �4.00
Max �0.59 �0.42 �1.31 �1.91
Rmin 1.0014 1.0065 1.0060 1.0060
Rmax 1.0615 1.0694 1.0653 1.0660
Fr(R�1),% 0 0 0 0
4R,% 0.63 0.39 0.25 0
4C ,% 6.57 1.49 0.72 0
4Y ,% 6.57 1.48 0.72 0
4L,% 3.16 1.30 0.54 0
4π,% 1.05 0.79 0.60 0

PER 1 and PER 2 = 1st and 2nd order Dynare solutions; EDS2 and EDS3 = 2nd and 3rd

degree EDS; Mean and Max = average and max absolute errors (in log10 units); Rmin and

Rmax = min and max R; Fr = frequency of R� 1; 4X = max di¤erence from EDS3.
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Table 6. Accuracy and speed in the NK model with 0%
in�ation target, 18.21% volatility of labor shock and ZLB

PER1 PER2 EDS2 EDS3

CPU 0.15 21.4 3.58
Mean �3.02 �3.72 �3.57 �3.65
Max �1.21 �1.34 �1.58 �1.81
Rmin 1.0000 1.0000 1.0000 1.0000
Rmax 1.0340 1.0364 1.0348 1.0374
Fr(R�1),% 1.76 1.19 2.46 2.23
4R,% 0.33 0.34 0.34 0
4C ,% 4.31 3.65 2.26 0
4Y ,% 4.33 3.65 2.26 0
4L,% 3.37 3.17 2.45 0
4π,% 1.17 1.39 0.79 0

PER 1 and PER 2 = 1st and 2nd order Dynare solutions; EDS2 and EDS3 = 2nd and 3rd

degree EDS; Mean and Max = average and max absolute errors (in log10 units); Rmin and

Rmax = min and max R; Fr = frequency of R� 1; 4X = max di¤erence from EDS3.
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Simulated series: ZLB is not imposed versus ZLB is
imposed
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Application of the Cluster Grid Algorithm:
ToTEM Model of the Bank of Canada
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Large-scale models for policy analysis

Mostly used by central banks and government agencies:

International Monetary Fund�s Global Economy Model, GEM
(Bayoumi et al., 2001);

US Federal Reserve Board�s SIGMA model (Erceg et al., 2006);

Bank of Canada Terms of Trade Economic Model, ToTEM (Dorich et
al. 2013);

European Central Bank�s New Area-Wide Model, NAWM (Coenen et
al. 2008);

Bank of England COMPASS model (Burgess et al., 2013);

Swedish Riksbank�s Ramses II model (Adolfson et al., 2013).
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Requirements to central bank models

1 Central bank models must mimic as close as possible the actual
economies in every possible dimension.
Then, the policymakers can produce realistic simulation of alternative
policies and to choose the best one.

2 Central bank models must be rich and �exible enough to describe
interactions between many variables of interest, including di¤erent
types of foreign and domestic consumption, investment, capital,
labor, prices, exchange rate, etc.
Central bank models may contain hundreds of equations.
Their estimation, calibration, solution and simulation are highly
nontrivial tasks.

3 Central bank models need DSGE models for policy analysis.
Econometric models have limitations for policy analysis (Lucas
critique).
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Numerical methods used by central banks

The central banks use linear (�rst-order) perturbation methods �
Linear Taylor�s expansions.

Advantages:
�computationally inexpensive;
� simple to use;
� can be applied to very large problems.

Drawbacks:
� insu¢ ciently accurate in the presence of strong nonlinearities;
�neglect second-order e¤ects of the volatility of shocks on numerical
solutions.

Nonlinear e¤ects can be economically signi�cant; see Judd et al.
(2017).

Maliar and Maliar (2017) Part 1: State-Dependent Models CEF 2017 Workshop 119 / 147



Questions addressed in the paper

1. How large could be the di¤erence between local linear and global
nonlinear solutions in realistically calibrated central banking models?

2. Could the limitations of the �rst-order perturbation analysis distort
policy implications of realistic central banking models?

The answers to these questions are unknown as no one has computed
nonlinear solutions to large-scale central banks�models.
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Project of Bank of Canada

To answer these questions, the Bank of Canada created a working
group whose objective is to construct global solutions to their
large-scale models.

The results of this project are summarized in the form of a technical
report and a research paper.

Paper "Should Central Banks Worry about Nonlinearities of Their
Large-Scale Macroeconomic Models?".

It is presented by Vadym Lepetyuk on this conference:

June 28, 2017, 11:10 to 12:50, Session B02.
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Full scale ToTEM model of Bank of Canada

The Terms of Trade Economic Model (ToTEM) �the main projection
and policy analysis model of the Bank of Canada.

Small-open economy model.

ToTEM includes 356 equations and unknowns

=) It is too large for the existing global solution methods.
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A scaled-down version of ToTEM

We construct a scaled-down version of ToTEM, which we call a �baby
ToTEM�(bToTEM) model.

bToTEM includes 49 equations and unknowns
=) It is still a large-scale model.

Production sectors: �nal-good production and commodity production.

Trade: �nal goods, commodities, imports.

One representative household, with di¤erentiated labour services.

Taylor-type interest rate rule.

Six shocks, including exogenous ROW.
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bToTEM: a serious challenge for global methods

The models like bToTEM has not been yet studied in the literature.

bToTEM contains 21 state variables (6 exogenous and 15 endogenous
ones) =) curse of dimensionality.

Maliar and Maliar (2015) solve a new Keynesian model with 8 state
variables (6 exogenous and 2 endogenous ones).

The di¤erence between 8 and 21 state variables is immense:

suppose we discretize each state variable into 10 grid points;
there are 108 and 1021 grid points, resp.;
this implies a 1013-times di¤erence in cost.

Moreover, the system of bToTEM�s equations is complex: it requires
the use of numerical solvers.
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A global solution by a cluster-grid algorithm

Ergodic set method that uses an adaptive grid

the model is solved only in the area of the state space visited in
simulation
Maliar and Maliar (2015)

Merges stochastic simulation and projection approaches

simulation is used to identify and approximate the ergodic set
quadrature integration is used to accurately solve the model on a
cluster grid

Our integration and optimization methods are tractable in
high-dimensional problems

non-product monomial integration
derivative-free solvers
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Computer codes

"GSSA_Two_Models.zip" - Generalized Stochastic Simulation Algorithm
(GSSA):

GSSA for one and multi-country growth models

"EDSCGA_Maliars_QE6_2015.zip" - Epsilon-distingushable set (EDS)
and cluster-grid methods:

EDS and cluster grid methods for one and multi-country

EDS method for a new Keynesian model with ZLB

We have much faster code for the new Keynesian model (5 seconds!)
- will provide it soon!
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Precomputation of integrals

Maliar and Maliar (2017) Part 1: State-Dependent Models CEF 2017 Workshop 127 / 147



Introduction

What is precomputation in general?

Precomputation = computation on initialization stage (Step 0), i.e.,
outside the main iterative cycle.

Precomputation saves on cost because we make computations
up-front rather than on each iteration.

Precomputation increases accuracy because some integrals can be

computed analytically.

Thus, we will not present a new solution method but a technique that
can be used in the context of existing methods to reduce their
computational expense.
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Introduction

Numerical approximation of conditional expectations

Solving dynamic economic models involves numerical approximation
of conditional expectations:

Bellman equation: V (k, z) = max
k 0,c

fu (c) + βE [V (k 0, z 0)]g;
Euler equation: u1 (c) = βE [u1 (c 0) (1� δ+ z 0f1 (k 0))].

Expectations are recomputed each time when we update decision
function, i.e., after each iteration.

Cost of evaluating expectations increases:

when the number of random variables increases (because
dimensionality of integrals increases);
when more accurate methods are used (because the number of
integration nodes increases);
when models become more complex (because numerical solvers are used
more intensively which involves additional evaluations of integrals).
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Introduction

Precomputation of conditional expectations

We introduce a simple technique - precomputation of integrals - that
approximates integrals at initial stage of the solution procedure:

we parameterize integrand with a polynomial function whose basis
functions are separable in endogenous and exogenous state variables
(e.g., ordinary polynomials);

outside the main iterative cycle, we construct integrals for any given
endogenous state variables;

in the main iterative cycle, the values of integrals can be immediately
derived using our precomputation results.

Under this procedure, we compute expectations just once, at the
very beginning and never again! E¤ectively, this convert a stochastic
problem into a deterministic problem with the correspondent reduction in
cost.
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Integrals under ordinary polynomials: an illustration

As an example, consider a complete �rst-degree ordinary polynomial,

P (k, z ; b) = b0 + b1k + b2z ,

where b � (b0, b1, b2) is coe¢ cients vector; k 0 is capital known at
present and z 0 = zρ exp (ε0) is shock with unknown random variable
ε0.
We can represent conditional expectation of P (k 0, z 0; b) as follows

E
�
P
�
k 0, z 0; b

��
= E

�
b0 + b1k 0 + b2zρ exp

�
ε0
��

= b0 + b1k 0 + b2zρE
�
exp

�
ε0
��
=

= θ0 + θ1k 0 + θ2zρ � P
�
k 0, zρ; θ

�
,

where θ � (θ0, θ1, θ2) is a new coe¢ cient vector θ0 = b0, θ1 = b1
and θ2 = b2E [exp (ε0)].
The integrals in θ can be computed up-front without solving the
model (i.e., precomputed).
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Integrals under ordinary polynomials: an illustration

Hence, conditional expectation of a polynomial function is given by
the same polynomial function but evaluated at a di¤erent coe¢ cients
vector, i.e.,

E
�
P
�
k 0, z 0; b

��
= P

�
k 0, zρ; θ

�
;

where θ0 = b0, θ1 = b1 and θ2 = b2E [exp (ε0)].
With this result, conditional expectation can be evaluated as follows.

outside the main iterative cycle, we precompute

I = E
�
exp

�
ε0
��
=

1p
2πσ

Z +∞

�∞
exp

�
ε0
�
exp

 
� (ε

0)2

2σ2

!
dε0;

inside the main iterative cycle, we use

E
�
P
�
k 0, z 0; (b0, b1, b2)

��
= P

�
k 0, zρ; (b0, b1, b2I)

�
.

This analysis can be easily generalized (see the paper) to
higher order polynomials;
multivariate random variables;
piecewise approximating functions.
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Analytical construction of integrals under precomputation

Integrals Ii can be constructed analytically for the case of normally
distributed shock ε0 � N

�
0, σ2

�
,

Ii = E
�
exp

�
ε0
��
=

1p
2πσ2

Z +∞

�∞
exp

�
ε0
�
exp

 
� (ε

0)2

2σ2

!
dε0

=
1p
2πσ2

Z +∞

�∞
exp

 
�
�
ε0 � σ2

�2
2σ2

!
exp

�
σ2

2

�
dε0

= exp
�

σ2

2

�
,

Fact used:R +∞
�∞ f (x)dx = 1 for a density function f of a normally distributed
variable x with mean liσ2 and variance σ2.

Analytical construction of integrals allows us to compute the integrals
exactly.
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Precomputation of integrals in the Bellman equation

The usual Bellman equation

V (k, z) = max
k 0,c

�
u (c) + βE

�
V
�
k 0, z 0

��	
s.t. k 0 = (1� δ) k + zf (k)� c ,
ln z 0 = ρ ln z + ε0, ε0 � N

�
0, σ2

�
,

Bellman equation with precomputation of integrals

bV (k, z ; b) .= max
k 0,c

n
u (c) + βbV �k 0, zρ; θ

�o
,

s.t. k 0 = (1� δ) k + zf (k)� c ,
θi = biIi , i = 0, 1, ..., n,

where Ii are precomputed integrals.
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Precomputation of integrals in the Euler equation

Precomputation of integrals in the Euler equation requires a change
of variables

Our precomputation technique assumes that the function we
parameterize is the same as the function for which we compute the
expectation.

This was true for Bellman equation: we parameterize V (k, z), and
we compute E [V (k 0, z 0)].

However, this is not true for a Euler equation algorithm that typically
parameterizes policy functions like C (k, z) or K (k, z) but needs to
compute E [u1 (c 0) (1� δ+ z 0f1 (k 0))].

We need to re-write the Euler equation in the way that is suitable for
precomputation, namely, to parameterize the variable
u1 (c 0) (1� δ+ z 0f1 (k 0)).
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Precomputation of integrals in the Euler equation

The usual Euler equation

u1 (c) = βE
�
u1
�
c 0
� �
1� δ+ z 0f1

�
k 0
���

Introduce a new variable q � u1 (c) [1� δ+ zf1 (k)] .
In terms of q and q0, the Euler equation is

q
1� δ+ zf1 (k)

= βE
�
q0
�
.

If we approximate q = Q (k, z), we have the same function under the
expectation, E [Q (k 0, z 0)], as required for precomputation.
Hence, we rewrite the Euler equation asbQ (k, z ; b)

1� δ+ zf 0 (k)
.
= βbQ �k 0, zρ; θ

�
.

Again, all the e¤ect of uncertainty on the solution is compressed into
a mapping between the vectors b and θ.
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Generality of precomputation of integrals

Precomputation of integrals works under very general assumptions
and can be applied to any set of equations that contains conditional
expectations, including the Bellman and Euler equations.

Precomputation of integrals is possible under many polynomial
families (ordinary, Chebyshev Hermite, etc) and essentially under any
process for shocks.

Precomputation of integrals is compatible with essentially all
computational techniques used by existing global solution methods,
including a variety of approximating functions, solution domains,
integration rules, �tting methods and iterative schemes for �nding
unknown parameters of approximating functions.

Given that we must approximate integrals just once, we can use very
accurate integration methods that would be intractable inside an
iterative cycle.
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Representative-agent model: parameters choice

Production function: f (kt ) = kα
t with α = 0.36.

Utility function: u (ct ) =
c1�γ
t �1
1�γ with γ 2

� 1
5 , 1, 5

	
.

Process for shocks: ln zt+1 = ρ ln zt + εt+1 with ρ = 0.95 and σ = 0.01.
Discount factor: β = 0.99.
Depreciation rate: δ = 0.025.
Accuracy is measured by an Euler-equation residual,

R (ki , zi ) � Ei

"
β
c�γ
i+1

c�γ
i

�
1� δ+ αθi+1kα�1

i+1

�#
� 1.
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Value function iteration

Parameterize the value function by a polynomial V (�) � bV (�; b):
bV (k, z ; b) = b0 + b1k + b2z + ....+ bnzL.

Step 0. Precompute integrals and construct a mapping between b and θ.
Construct a grid, fkm , zmgMm=1.
Step 1. Fix b � (b0, b1, b2, ..., bn). Given fkm , zmgMm=1 solve for fcmg

M
m=1.

Step 2. Compute the expectation using numerical integration (quadrature
integration or monomial rules)

Vm � u (cm) + βbV �k 0m , z 0m ; θ� .
Regress Vm on

�
1, km , zm , k2m , z

2
m , ..., z

L
m

�
=) get bb.

Step 3. Solve for the coe¢ cients using damping,

b(j+1) = (1� ξ) b(j) + ξbb, ξ 2 (0, 1) .
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Table 1. Value function iteration in the
representative-agent model

Polynomial no precomputation precomputation
degree Mean Max CPU Mean Max CPU
1st - - - - - -
2nd -3.42 -3.14 28.87 -3.42 -3.14 17.29
3rd -4.57 -4.06 43.94 -4.57 -4.06 26.97
4th -5.46 -5.07 55.99 -5.46 -5.07 34.21
5th -6.49 -6.01 73.78 -6.49 -6.01 46.42

Mean and Max are unit-free Euler equation errors in log10 units, e.g.,

�4 means 10�4 = 0.0001 (0.01%);

�4.5 means 10�4.5 = 0.0000316 (0.00316%).

Benchmark parameters: γ = 1/3, δ = 0.025, ρ = 0.95, σ = 0.01.
In the paper, also consider γ = 3. Accuracy and speed are similar.
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Euler equation algorithm

Parameterize the RHS of the Euler equation by a polynomial bQ (k, z ; b),
bQ (k, z ; b) = b0 + b1k + b2z + ....+ bnzL

Step 0. Precompute integrals and construct a mapping between b and θ.
Construct a grid, fkm , zmgMm=1.
Step 1. Fix b � (b0, b1, b2, ..., bn). Given fqm , zmgMm=1 solve for
fkm , cmgMm=1.
Step 2. Compute the expectation using numerical integration (quadrature
integration or monomial rules)

bqm = βbQ �k 0m , zρ
m ; θ

�
[1� δ+ zf1 (km)] .

Regress bqm on �1, km , zm , k2m , z2m , ..., zLm� =) get bb.
Step 3. Solve for the coe¢ cients using damping,

b(j+1) = (1� ξ) b(j) + ξbb, ξ 2 (0, 1) .
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Table 2. Euler equation method in the
representative-agent model

Polynomial no precomputation precomputation
degree Mean Max CPU Mean Max CPU
1st -3.47 -3.13 3.00 -3.47 -3.13 0.63
2nd -4.64 -4.10 15.49 -4.64 -4.10 2.77
3rd -5.26 -5.06 18.09 -5.26 -5.06 3.09
4th -6.37 -5.90 22.29 -6.37 -5.90 3.62
5th -7.34 -6.92 25.53 -7.34 -6.92 4.25
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Multicountry model

The planner maximizes a weighted sum of N countries�utility functions:

maxn
fcht ,kht+1gNh=1

o∞

t=0

E0
N

∑
h=1

vh
 

∞

∑
t=0

βtuh
�
cht
�!

subject to

N

∑
h=1

cht +
N

∑
h=1

kht+1 =
N

∑
h=1

kht (1� δ) +
N

∑
h=1

zht f
h
�
kht
�
,

where vh is country h�s welfare weight.
Productivity of country h follows the process

ln zht+1 = ρ ln zht + εht+1,

where εht+1 � ςt+1 + ςht+1 with ςt+1 � N
�
0, σ2

�
is identical for all

countries and ςht+1 � N
�
0, σ2

�
is country-speci�c.
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Table 3. Accuracy and speed in the multi-country model

Polynomial N = 2 N = 20 N = 30
degree Mean Max CPU Mean Max CPU Mean Max CPU
1st -2.77 -1.81 61 -3.12 -2.09 152 -3.15 -2.08 221
2nd -3.88 -2.61 223 -4.36 -3.26 3303 -4.22 -3.22 13543
3rd -4.94 -3.55 382 - - - - - -
4th -6.05 -4.68 574 - - - - - -
5th -7.15 -5.79 738 - - - - - -
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Additional results

We show that numerical integration methods become less accurate as
the degree of uncertainty increases, i.e. the standard deviation of
shock increases.

We evaluate the gains from precomputation for other numerical
methods: Endogenous Grid method of Carroll (2005), Envelope
Condition method of Maliar and Maliar (2013).

We show that precomputation simpli�es construction of numerical
solutions to more complex models such as the model with elastic
labor supply.

Precomputation is suitable for discrete shocks. In such case, the
expectations are computed exactly both with and without
precomputation and all the gains from precomputation come in terms
of costs reduction.

MATLAB codes are available online.
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Conclusion

Many existing solution methods in the literature rely on parametric
functions that satisfy the assumption of separability used in the
present paper.

For such methods, we can precompute integrals in the stage of
initialization.

The resulting transformed stochastic problem has the same
computational complexity as a similar deterministic problem.

Our technique of precomputation of integrals is very general and can
be applied to essentially any set of equations that contains conditional
expectations.

Precomputation of integrals can save programming e¤orts, reduce a
computational burden and increase accuracy of solutions.

It is of special value in computationally intense applications.

Maliar and Maliar (2017) Part 1: State-Dependent Models CEF 2017 Workshop 146 / 147



Computer codes

"Precomputation_JMMT_QE_2016.zip" - Precomputation of integrals
(= get rid o¤ expectations before solving the model) for

Conventional value and policy iteration

Envelope condition value and policy iteration

Endogenous grid method

Conventional Euler equation method

Multi-country model

Aiyagari (1994) model with discrete shocks
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Motivation: Why nonstationary models?

Unbalanced growth in the U.S. data

Growth patterns appear to be highly unbalanced. For example, over
the 1963-1992 period (Krusell, Ohanian, Ríos-Rull, Violante 2000):
�output and the stock of structures increased by a factor of two;
� the stock of equipment increased by more than seven times;
� the number of unskilled workers slightly decreased;
� the number of skilled workers nearly doubled;
� the price of equipment relative to consumption (structures) went
down by more than four times;
� the skill premium was roughly stationary.
Moreover, the growth rates are not constant over time.
Question: "Can a general-equilibrium macroeconomic model (e.g.
with capital-skill complementarity) explain such unbalanced growth
patterns?"
To answer, one may need a framework for analyzing nonstationary
and unbalanced growth models.
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Motivation: Why nonstationary models? (cont.)

Monetary policy normalization
How to normalize the monetary policy after the end of the crisis?

Great Recession: ZLB and unconventional monetary policies (forward
guidance and quantitative easing).
Normalizing = switching back to some Taylor rule.
Janet L. Yellen (2015) "Normalizing monetary policy: prospects and
perspectives".

Questions:

Should the Fed normalize policy now or later?
Should the Fed normalize policy gradually or all at once?
Should the regime shift be announced in advance?
Should the policy normalization be time or state dependent?

We need a coherent nonlinear framework for analyzing time-dependent
models with parameter changes.
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Motivation: Why nonstationary models? (cont.)

Other examples of nonstationary applications

deterministic trends in the data (population growth, climate changes,
etc.);

di¤erent kinds of technological progress that augment productivity of
di¤erent factors, e.g., directed technical change;

an entry into a monetary union;

nonrecurrent policy regime switches;

deterministic seasonals;

changes in the consumer�s tastes and habits.

In such models, the optimal value and/or decision functions nontrivially
change from one period to another.
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Balanced growth models

Some nonstationary models can be converted into stationary, for
example, a class of balanced growth models.

However, the class of balanced growth models is limited:

King, Plosser and Rebelo (1988) show that the standard neoclassical
growth model is consistent with balanced growth only under the
assumption of labor augmenting technological progress and under
some additional restrictions on u and f .

If one deviates from their assumptions, the property of balanced
growth does not survive.

) Our goal is to solve nonstationary models without relying on
the existence of a balanced growth path.
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Naive, recurrent and nonrecurrent regime changes

How does the literature model regime changes?
Naive solution approaches: when solving the model, agents believe
that the current regime is permanent but in policy experiments
(simulation), they face regime changes.
- Logically inconsistent and contradicts to rational expectations.
Literature on regime switches (e.g., Davig and Leeper (2008))
provides a logically consistent way of modeling unanticipated
recurrent regime switches: e.g., two recurrent regimes that happen
with some probability,
- High and low productivity states;
- UK leaves the EU but hopefully will come back.
But some regime changes are nonrecurrent (hopefully) and can be
ranked by welfare, e.g.,
Slavery was abolished;
Women got the right to vote, etc.

) Our goal is to model nonrecurrent, time dependent regime
changes.
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In this talk

The rest of the talk:

1 We will explain the methodology of analyzing parameter changes
using a simple growth model.

2 We will test this methodology using a growth model with balanced
growth.

3 We will show a collection of nonstationary growth models with:

capital augmenting technological progress;
anticipated regime switches;
parameter drifting;
time-varying volatility with a deterministic trend;
seasonal adjustments;
estimation and calibration of parameters in an unbalanced growth
model using data on the U.S. economy.

4 We will solve and simulate non-stationary transitions in a stylized new
Keynesian model.
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A nonstationary Markov optimization problem
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A nonstationary growth model

We now introduce nonstationary Markov environment into dynamic
general equilibrium modeling paradigm:

max
fct ,kt+1g∞

t=0

E0

"
∞

∑
t=0

βtut (ct )

#
(1)

s.t. ct + kt+1 = (1� δ) kt + ft (kt , zt ) , (2)

zt+1 = ϕt (zt , εt+1) , (3)

� ct � 0 and kt � 0 are consumption and capital, resp.;
� initial condition (k0, z0) is given;
�ut : R+ ! R and ft : R2

+ ! R+ and ϕt : R2 ! R are possibly
time-varying utility function, production function and law of motion for
exogenous state variable zt , resp.;
� sequence of ut , ft and ϕt for t � 0 is known to the agent in period
t = 0; εt+1 is i.i.d;
� β 2 (0, 1) = discount factor; δ 2 [0, 1] =depreciation rate; Et [�] =
operator of expectation.
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Why cannot we solve a nonstationary model with
conventional solution methods?

A stationary growth model (dynamic-programming formulation):

V (k, z) = max
c ,k 0

�
u (c) + βE

�
V
�
k 0, z 0

��	
s.t. k 0 = (1� δ) k + zf (k)� c ,
ln z 0 = ρ ln z + ε0, ε0 � N

�
0, σ2

�
.

An interior solution satis�es the Euler equation:

u0 (c) = βE
�
u0
�
c 0
� �
1� δ+ z 0f 0

�
k 0
���

.

Conventional solution methods: either iterate on Bellman equation
until a �xed-point V is found or iterate on Euler equation until a
�xed-point decision function k 0 = K (k, z) is found.
However, if u, f , ρ and σ are time-dependent, then Vt (�) 6= Vt+1 (�)
and Kt (�) 6= Kt+1 (�), i.e., no �xed-point functions V and K .
We need to construct a sequence (path) of time-dependent value
functions (V0 (�) ,V1 (�) , ...), decision functions (K0 (�) ,K1 (�) , ...).
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Stochastic environment (informally)

In the paper, we distinguish between stochastic processes that are

Markov;
stationary;
have stationary transition,

Informally, a (�rst-order) Markov stochastic process is a process such
that probability of an event depends not on the entire history but on
the most recent past.

A stationary stochastic process is a process whose unconditional
probability distribution is time-invariant.

A stochastic process with stationary transition is a process whose
conditional probability distribution is time-invariant.
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Example of the stochastic process considered

Consider an AR(1) process with time-dependent ρt and σt :

zt+1 = ρtzt + σt εt+1, εt+1 � N (0, 1) ,

ρt 2 (�1, 1) and σt 2 (0,∞) are given at t = 0.
The conditional distribution zt+1 � N

�
ρtz t , σ

2
t

�
depends only on the

most recent past zt = z t and is independent of history (zt , ..., z0).
=) The process is Markov.
Since ρt and σt change over time, the conditional probability
distribution N (ρtz t , σt ) depends not only on state zt = z t but also
on a speci�c period t. =) The transitions are nonstationary.
If ρt = ρ and σt = σ for all t, then the conditional probability
distribution N (ρz t , σ) depends only on state zt = z t but not on
time. =) The transitions are stationary.

Note: Stochastic process can have stationary transition but still be
nonstationary because it�s unit root or explosive, e.g.,
zt+1 = ρzt + σεt+1, with jρj > 1 ) We do not study these cases
explicitly.
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Assumptions on utility and production functions

Assumptions on the utility function ut for t � 0:
� twice continuously di¤erentiable;
� strictly increasing;
� strictly concave;
� satis�es the Inada conditions.

Assumptions on the production function ft for t � 0:
� twice continuously di¤erentiable;
� strictly increasing in capital;
� concave in capital;
� satis�es the Inada conditions.
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Assumption of a bounded objective function

De�ne a pure capital accumulation process fkmaxt g∞
t=0 by assuming

ct = 0 for all t, which for each history ht = (z0, ..., zt ) leads to

kmaxt+1 = ft (k
max
t , zt ) ,

kmax0 � k0. We assume that the objective function is bounded:

E0

"
∞

∑
t=0

βtut (kmaxt )

#
< ∞.

This assumption insures that the objective function is bounded so that its
maximum exists. This assumption holds when

ut is bounded from above for all t, i.e., ut (c) < ∞ for any c � 0;
ft is bounded from above for all t, i.e., ft (k, zt ) < ∞ for any k � 0
and zt 2 Zt ;
for economies with growth as long as kmaxt does not grow too fast.

Thus, we can solve models with nonvanishing eternal growth, provided
that the objective function is bounded.

Maliar and Maliar (2017) Part 2: Time-Dependent Models CEF 2017 Workshop 14 / 118



Feasible and optimal programs

A feasible program for our nonstationary economy is a pair of
adapted (i.e., measurable for all t) processes fct , ktg∞

t=0 such that
given initial condition k0 and history h∞ = (ε0, ε1...), they satisfy
ct � 0, kt � 0 and the budget constraint for all t.

Let =∞ be a set of all feasible programs for given initial capital k0
and given history h∞ = (ε0, ε1...).

Let us introduce the concept of a solution of the studied model.

A feasible program fc∞
t , k

∞
t g∞

t=0 2 =∞ is called an optimal program
if

E0

"
∞

∑
t=0

βt fut (c∞
t )� ut (ct )g

#
� 0

for every feasible process fct , ktg∞
t=0 2 =∞.
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Extended function path framework
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Introducing extended function path (EFP) framework

Extended function path (EFP) framework includes two steps.

Solving a T -period stationary economy: Assume that in a very
remote period T , the economy becomes stationary, i.e., the utility and
production functions and the laws of motions for exogenous shocks
are time invariant, i.e., ut = u, ft = f and ϕt = ϕ for all t � T :
) we can solve for equilibrium using conventional methods for
stationary models.

Constructing a function path: Using the T -period solution as
terminal condition, iterate backward on optimality conditions to
construct a sequence (path) of time-dependent value and decision
functions (V0 (�) ,V1 (�) , ...) and/or (K0 (�) ,K1 (�) , ...).
) this is like solving OLG models.
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Extended function path (EFP) framework

Step 0. Initialization. Choose some T � τ and construct a T -period stationary
economy such that ut = u, ft = f and ϕt = ϕ for all t � T .
Step 1. Construct a stationary economy, i.e., �nd a stationary capital function
K satisfying:
u0(c) = βE [u0(c 0)(1� δ+ f 0 (k 0, ϕ (z , ε0)))]
c = (1� δ) k + f (k, z)�k 0
c 0= (1� δ) k 0+f (k 0, ϕ (z , ε0))�k 00
k 0 = K (k, z) and k 00 = K (k 0, ϕ (z , ε0)).

Step 2. Construct a path for capital policy functions (K0, ...,KT ) that matches
the terminal condition KT � K and that satis�es for t = 0, ...T � 1:
u0t (c t ) = βE t

�
u0t+1(ct+1)(1� δ+ f 0t+1 (kt+1, ϕt (zt , εt+1)))

�
c t= (1� δ) kt+f t (kt , zt )�k t+1
c t+1= (1� δ) kt+1+f t+1 (kt+1, ϕt (zt , εt+1))�k t+2
kt+1 = Kt (kt , zt ) and kt+2 = Kt+1 (kt+1, ϕt (zt , εt+1)) .

Output: the �rst τ functions (K0, ...,Kτ) constitute an approximate solution.
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Example of function path constructed by EFP
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Theoretical foundations of EFP framework

We provide theoretical foundations of the extended function path
framework.

We prove two theorems:

Theorem 1 (existence): EFP approximations exists, is unique and
possess a Markov structure.

Theorem 2 (turnpike): EFP can approximate a time-dependent
solution to a nonstationary Markov model with an arbitrary degree of
precision as the time horizon T increases.
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Theorem 1: Nonstationary Markov program

Theorem 1 (Optimal program of the T-period stationary economy). In
the T-period stationary economy, the optimal program is given by a
Markov process with possibly nonstationary transition probabilities.

Proof. Under our assumptions on ut , ft and the objective function, FOCs
are necessary for optimality. We will show that FOCs are also su¢ cient to
identify the optimal program and to establish its Markov structure. Our
proof is constructive: it relies on backward induction.

Step 1. �At T , the economy becomes stationary and remains stationary
forever, i.e., ut � u, ft � f and ϕt � ϕ for all t � T .
�Thus, the model�s equations and decision functions are time invariant for
t � T .
� It is well known that under our assumptions on ut , ft and the objective
function, there is a unique stationary Markov capital function K that
satis�es the optimality conditions.
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Theorem 1: Nonstationary Markov program (cont.)

Step 2. Given the constructed T -period capital function KT � K , we
de�ne the capital functions KT�1, ...,K0 in previous periods by using
backward induction. The Euler equation for period T � 1,

u0T�1(cT�1) = βET�1
�
u0T (cT )(1� δ+ f 0T (kT , zT ))

�
,

where cT�1 and cT are related to kT and kT+1 in periods T and T � 1 by
cT�1 = (1� δ) kT�1 + fT�1 (kT�1, zT�1)� kT ,
cT = (1� δ) kT + fT (kT , zT )� kT+1.

� zT follows a possibly nonstationary Markov process, i.e.,
zT = ϕT (zT�1, ε).
�By construction, we have that kT+1 = KT (kT , zT ) is Markov.
�Thus, we obtain a functional equation that de�nes kT for each
(kT�1, zT�1), i.e., the capital decisions at period T � 1 are given by a
state-contingent function kT = KT�1 (kT�1, zT�1).
�By proceeding iteratively backward, we construct
KT�1 (kT�1, zT�1) , ...,K0 (k0, z0). �
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Turnpike theorem

Turnpike � highway.
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Turnpike theorem

Turnpike theorems: turnpike is often the fastest route between two
points which are far apart even if it is not a direct shortest route.
Example: Driving from Los Angeles to San Francisco on highway 5.
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Illustration of turnpike theorem

When you are young, you behave as if you will live forever...
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Theorem 2 (turnpike theorem)

Let us �x history h∞ = (ε0, ε1...) and initial condition (k0, z0) and
construct the productivity levels fztgTt=0 using the law of motion. Use the
constructed functions K0 (k0, z0) , ...,KT (kT , zT ) to generate the optimal
program

�
cTt , k

T
t

	∞
t=0 for the T -period stationary economy

kTt+1 = Kt
�
kTt , zt

�
,

where kT0 = k0, and c
T
t satis�es the budget constraint for all t � 0.

Theorem 2 (Turnpike theorem): For any real number ε > 0 and any
natural number τ, there exists a threshold terminal date T (ε, τ) such
that for any T � T (ε, τ), we have���k∞

t � kTt
��� < ε, for all t � τ,

fc∞
t , k

∞
t g∞

t=0 2 =∞ = optimal program in the nonstationary economy;�
cTt , k

T
t

	T
t=0 = optimal program in the T-period stationary economy.
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Remark on turnpike theorem

The convergence is uniform:

Our turnpike theorem states that for all T � T (ε, τ), the
constructed nonstationary Markov approximation

�
kTt
	
is guaranteed

to be within a given ε-accuracy range from the true solution fk∞
t g

during the initial τ periods.

For periods t > τ, our approximation may become insu¢ ciently
accurate and exit the ε-accuracy range.

That is, the optimal program of the T -period stationary economy�
kTt
	

�follows for a long time the optimal program of the nonstationary
economy fk∞

t g (turnpike),
�and it deviates from turnpike only in the very last moment to meet
a given terminal condition (the �nal destination o¤ turnpike).
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Proof of Turnpike theorem

The proof of Theorem 2 relies on three lemmas:

Lemma 1 The optimal program of the �nite horizon economy with a zero
terminal condition converges to the limit program.
Lemma 2 The optimal program of the T -period stationary economy
converges to the same limit program.
Lemma 3 The limit program of the �nite horizon economies with a zero
terminal condition is optimal in the nonstationary in�nite horizon economy.

+ (Theorem 2)

The limit optimal program of the T -period stationary economy is optimal
in the in�nite horizon nonstationary economy as T ! ∞.
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Some related literature.
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Earlier literature on nonstationary stochastic growth
models

Early literature on stationary stochastic growth models,
e.g., Brock and Gale (1969), Brock (1971), Brock and Mirman (1972,
1973), Mirman and Zilcha (1977), Brock and Majumdar (1978), Mitra
and Zilcha (1981),
characterizes the properties of their solutions.

Early literature on nonstationary stochastic growth models,
e.g., Majumdar and Zilcha (1987), Mitra and Nyarko (1991), Joshi
(1997),
studies in�nite-horizon, nonstationary economies similar to ours
without assuming stationarity and Markov structure of the solutions;
but is limited to purely theoretical analysis and does not o¤er practical
methods for constructing their nonstationary solutions in applications.

Our main contribution:
distinguish a tractable class of nonstationary models;
propose a framework for studying quantitative implications of such
models.
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Extended path versus extended function path

EFP is related to an "extended path" (EP) method of Fair&Taylor (1983).

Fair and Taylor (1983) EP method constructs a path for variables for
a larger time horizon T than the number of periods τ for which
an approximate solution is actually needed.
In this respect, our EFP is similar to EP framework of Fair and Taylor
(1983).
By choosing su¢ ciently large T , both EFP and EP mitigate the e¤ect
of a speci�c terminal condition on the approximation during the initial
τ periods.

In turn, the term "path" versus "function path" highlights the key
di¤erence between the EP and EFP methods:

Fair and Taylor�s (1983) EP method constructs a path for variables
under the assumption of certainty equivalence.
EFP method constructs a path for decision functions by
approximating expectation functions accurately using accurate
deterministic integration methods such as Gauss-Hermite quadrature
and monomial methods.
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Implementation of EFP

We implement EFP in the way that makes it tractable in complex and
large-scale applications:

Smolyak sparse grids;
nonproduct monomial integration methods;
derivative-free solvers.

Examples of MATLAB codes are provided in the authors�web pages.

The running times for EFP can be reduced further if we use
parallelization (our iteration, which is in line with Gauss-Jacobi
method, is naturally parallelizable).
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Testing EFP using a model with balanced growth
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Assessing EFP accuracy in a model with balanced growth

We assess the quality of approximations produced by EFP in the
context of a model with balanced growth parameterized by

ut (c) =
c1�γ

1� γ
, and ft (k, z) = zkαA1�α

t ,

�γ > 0 and α 2 (0, 1);
�At = A0g tA = labor augmenting technological progress with an
exogenous constant growth rate gA � 1.
Productivity is assumed to follow

ln zt+1 = ρ ln zt + σεt+1, εt+1 � N (0, 1) ,

ρ 2 (�1, 1), σ 2 (0,∞).
This version of the model is consistent with balanced growth and can
be converted into a stationary model; see King, Plosser and Rebelo
(1988).
We can solve the stationary model very accurately and use the
accurate solution for comparison.
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A comparison of four solution methods

We solve the nonstationary growth model using four alternative solution
methods:

1 "Exact solution" is a very accurate solution to the stationary model
with a balanced growth path produced by the conventional Smolyak
method;

2 "EFP solution" is produced by the EFP method that solves the
nonstationary model directly;

3 "Naive solution" is produced by replacing the nonstationary model
with a sequence of stationary models, and it solves such models one
by one.
� it neglects a connection between the decision functions of di¤erent
periods (unlike EFP);

4 "Fair and Taylor solution" is produced by using Fair and Taylor�s
(1983) method.
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Fair and Taylor�s (1983) extended path method

Fair and Taylor�s (1983) method relies on certainty equivalence for
approximating expectation functions:

Et
�
u0t+1 (ct+1) (1� δ+ f 0(kt+1, zt+1))

�
� u0t+1 (ct+1) (1� δ+ f 0t+1(kt+1,Et [zt+1])).

To avoid explosive behavior, the method iterates on the economy�s
path at once in line with Gauss-Jacobi iteration.

Solution procedure:
(i) Guess the economy�s path fk1, ..., kT+1g;
(ii) Substitute fk1, ..., kT+1g in the RHS of T Euler equations, resp.,
and obtain a new path fk0, ..., kT g in the LHS of T Euler equations;
(iii) Iterate on the path until the convergence is achieved.
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Parameterization

For all experiments, we �x

α = 0.36, β = 0.99, δ = 0.025, ρ = 0.95.

The remaining parameters are set in the benchmark case at

γ = 5, σε = 0.03, gA = 1.01, T = 200.

We vary these parameters across experiments.

For all simulations, we use the same initial condition and the same
sequence of productivity shocks.
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Critical role of expectations in the accuracy of solutions
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Table 1: comparison of four solution methods

Fair-Taylor (1983) Naive EFP method
method, τ = 1 method τ = 200

Terminal Steady Steady - Balanced T -period
condition state state growth stationary

T 200 400 200 200 200 400

Maximum errors across t periods in log10 units
t 2 [0, 50] -1.29 -1.29 -1.04 -6.82 -6.01 -6.42
t 2 [0, 100] -1.18 -1.18 -0.92 -6.68 -4.39 -5.99
t 2 [0, 150] -1.14 -1.14 -0.89 -6.66 -2.89 -5.98
t 2 [0, 175] -1.14 -1.13 -0.89 -6.66 -2.10 -5.98
t 2 [0, 200] -1.14 -1.13 -0.89 -6.66 -1.45 -5.92

Running time, in seconds
Solution 1.2(+4) 6.1(+4) 28.9 104.9 99.1 225.9
Simulation - - 2.6 2.6 2.8 5.7
Total 1.2(+4) 6.1(+4) 31.5 107.6 101.9 231.6
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Fair and Taylor�s (1983) method

The di¤erences between the exact solution and Fair and Taylor�s
(1983) solution are around 10�1.6 � 2.5% in Table 1.

Fair and Taylor�s (1983) method has relatively low accuracy because
approximation of conditional expectation is inaccurate.

Fair and Taylor�s (1983) method is more accurate for models with a
smaller variance of shocks and /or smaller degrees of nonlinearities.

For example, we assess the di¤erence between the exact solution and
the Fair and Taylor�s (1983) solutions for the model with γ = 1,
σε = 0.01, gA = 1.01 and T = 200, and we found that such a
di¤erence is around 0.1% (this experiment is not reported).
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Naive method

The di¤erence between the exact and naive solutions is about 10%.
Isn�t surprising? The naive method does take into account
technology growth when constructing solutions.

it solves each t-period stationary model by assuming that today�s and
tomorrow�s productivities are correctly given by At = A0g tA and
At+1 = A0g

t+1
A .

Why does the naive method perform so poorly?
Because it is logically inconsistent:

agents are "unaware" of future permanent productivity growth;
they have expectations that are systematically more pessimistic than
those of "aware" agents;
they are only confronted with parameter changes later, in simulations.

Davig and Leeper (2009) address this problem by introducing rational
expectations of regime switches.
We address this problem in the context of nonstationary models.
Our conclusion: approximating expectation functions accurately is
critical for constructing accurate solutions to nonstationary models.
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Terminal condition and the "tail" of simulation

The exact and EFP solutions di¤er in the tail considerably; see Figure
3.
This di¤erence is especially well seen for the detrended time series
(the right panel).
The di¤erence in the tail is due to the di¤erence in the terminal
conditions:

to construct the exact solution, we assume that the economy grows
forever,
while to construct the EFP solution, we assume that it stops growing
at T .

If we use the same terminal conditions in both cases, then the EFP
solution would be visually indistinguishable from the exact solution
everywhere in the �gure.
Our turnpike theorem suggests a cheaper version of EFP in which we
construct a longer function path, the EFP solution is very accurate
everywhere including the tail.

Maliar and Maliar (2017) Part 2: Time-Dependent Models CEF 2017 Workshop 42 / 118



Sensitivity analysis

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Models 6 Model 7

γ 5 5 5 5 0.1 1 10
σε 0.03 0.03 0.03 0.01 0.01 0.01 0.01
gA 1.01 1.00 1.05 1.01 1.01 1.01 1.01

Maximum errors across t periods in log10 units
t 2 [0, 50] -6.42 -6.31 -7.13 -6.66 -6.08 -6.24 -6.81
t 2 [0, 100] -5.99 -6.12 -7.05 -6.54 -5.97 -6.18 -6.36
t 2 [0, 150] -5.98 -6.04 -7.05 -6.52 -5.97 -6.18 -6.35
t 2 [0, 175] -5.98 -6.01 -7.05 -6.52 -5.97 -6.13 -6.33
t 2 [0, 200] -5.92 -5.99 -7.05 -6.51 -5.96 -5.88 -6.24

Running time, in seconds
Solution 225.9 150.0 193.0 216.98 836.5 300.7 245.9
Simulation 5.6 5.7 5.8 5.66 5.6 5.6 5.7
Total 231.6 155.7 198.8 222.64 842.1 306.3 251.6
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Nonstationary and Unbalanced Growth Applications
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Application 1: model with capital augmenting
technological progress

Acemoglu (2002) argues that technical change may be directed
toward di¤erent factors of production.

Acemoglu (2003) explicitly incorporates capital augmenting
technological progress into a deterministic model of endogenous
technical change.

However, the assumption of capital augmenting technological progress
is inconsistent with a balanced growth path in the standard
neoclassical stochastic growth model but only is the assumption of
labor augmenting technological progress; see King, Plosser and
Rebello (1988).

We use EFP to solve a nonstationary growth model with capital
augmenting technological progress that does not admit a stationary
Markov equilibrium.
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Application 1: model with capital augmenting
technological progress (cont.)

We assume a constant elasticity of substitution (CES) production
function, and we allow for both labor and capital augmenting
technological progresses,

F (kt , `t ) = [α(Ak ,tkt )
v + (1� α)(A`,t`t )

v ]1/v ,

�Ak ,t = Ak ,0g tAk ; A`,t = A`,0g
t
A`
; v � 1; α 2 (0, 1);

�gAk and gA` = rates of capital and labour augmenting technological
progresses, resp.

Labor is supplied inelastically. Let `t = 1 for all t. The corresponding
production function by f (kt ) � F (kt , 1).
The model with capital augmenting technological progress does not
satisfy the assumptions in King, Plosser and Rebelo (1988) and does
not admit a balanced growth path.
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Parameterization for numerical experiments

For numerical experiments, we assume:

T = 260, γ = 1, α = 0.36, β = 0.99,

δ = 0.025, ρ = 0.95, σε = 0.01, v = �0.42;

the last value is taken in line with Antrás (2004) who estimated the
elasticity of substitution between capital and labor to be in the range
[0.641, 0.892] that corresponds to v 2 [�0.12,�0.56].

We solve two models:

the model with labor augmenting progress parameterized by
A`,0 = 1.1130, gA` = 1.00153 and Ak ,0 = gAk = 1;
the model with capital augmenting progress parameterized by
Ak ,0 = 1, gAk = 0.9867 and A`,0 = gA` = 1.

For both models, A`,0, gA` , Ak ,0, gAk are chosen to approximately
match the initial and terminal capital stocks for time-series solutions
of both models.
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Capital versus labor augmenting technological progress
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Application 2: A nonstationary model with a parameter
shift

Recurrent regime changes

Recent literature provides a logically consistent way of modeling
unanticipated regime switches.

Agents solve maximization problems in which regime changes are
possible.

Agents can adequately react to regime changes in simulation as
implied by their decision functions;

e.g., Sims and Zha (2006), Davig and Leeper (2007, 2009), Farmer,
Waggoner, and Zha (2011), Foerster, Rubio-Ramírez, Waggoner and
Zha (2013).
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Application 2: A nonstationary model with a parameter
shift (cont.)

Recurrent unanticipated versus nonrecurrent anticipated regime
changes

However, there are real-world situations when regime shifts are
nonrecurring and anticipated by agents in advance,

e.g., seasonal changes, presidential elections with anticipated outcome,
forward-looking policy announcements, anticipated technological
advances, etc.

Recently, it is advocated in, e.g., Cochrane (1994), Beaudry and
Portier (2006), Schmitt-Grohé and Uribe (2012).

Anticipated accession of new members to the European Union; see
Garmel, Maliar and Maliar (2008).
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Application 2: A nonstationary model with a parameter
shift (cont.)

Recurrent anticipated regime changes

Schmitt-Grohé and Uribe (2012) study anticipated parameter shifts of
�xed time horizons in the context of stationary Markov models;

the parameter shifts systematically occur, for example, each fourth or
each eighth periods.

However, the anticipated parameter shifts may be either nonrecurring
and do not have �xed anticipation horizons.

A distinctive feature of the EFP analysis is that we can solve a model
with any given sequence of anticipated nonrecurrent technology
shocks.
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Application 2: Anticipated technology shocks
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Application 2: A model with seasonal changes

Seasonal adjustments are a special case of anticipated regime
switches;

see Barsky and Miron (1989) for well documented evidence on the
importance of seasonal changes for the business cycle.

Hansen and Sargent (1993) and Christiano and Todd (2002) provide
examples in which using seasonally adjusted data does not distort the
business cycle analysis.

Saijo (2013) argues that inadequate treatment of seasonal changes
may lead to a signi�cant bias in the parameter estimates.

To investigate how seasonality interacts with other endogenous
variables, it is important for macroeconomics to model the seasonal
changes explicitly.
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Application 2: A model with seasonal changes (cont.)
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Application 3: A nonstationary model with a parameter
drift

Evidence in favor of parameter drifting;

e.g., Clarida, Galí and Gertler (2000), Lubik and Schorfheide (2004),
Cogley and Sargent (2005), Galí (2006), Goodfriend and King (2009),
Canova (2009).

The literature assumes that parameters follow a stationary
autoregressive process;

e.g., Fernández-Villaverde and Rubio-Ramírez (2007),
Fernández-Villaverde, Guerrón-Quintana and Rubio-Ramírez (2010).

However, if the parameters follow a time-trend, the equilibrium
decision rules change each period and there is no stationary solution.
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Application 3: A nonstationary model with a parameter
drift (cont.)
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Application 3: Diminishing volatility

A large body of recent literature documents the importance of degree
of uncertainty for the business cycle.

This literature argues that volatility changes over time and models
volatility (e.g., standard deviation of the productivity level) as a
stochastic process or as a regime switch;

e.g., Bloom (2009), Fernández-Villaverde and Rubio-Ramírez (2010),
Fernández-Villaverde, Guerrón-Quintana and Rubio-Ramírez (2010).

The literature normally assumes that the standard deviation of
exogenous shocks either follows a Markov process or experiences
recurring Markov regime switches.

In the latter case, volatility can be treated as an additional state
variable, and in the former case, the regime is an additional state
variable; in both cases, it is possible to cast the model with changing
volatility into the conventional stationary framework.
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Application 3: Diminishing volatility (cont.)

However, there is evidence that the volatility has a well pronounced time
trend.

Mc Connel and Pérez-Quiros (2000) document a monotone structural
decline in the volatility of real GDP growth in the U.S. economy.

Blanchard and Simon (2001) �nd a nonmonotone pattern of the
decline in the U.S. GDP volatility: there was a steady decline in the
volatility from the 1950s to 1970, then there was a stationary pattern
and �nally, there was another decline in the late 1980s and the 1990s.

Stock and Watson (2003) �nd a sharp reduction in volatility of U.S.
GDP growth in the �rst quarter of 1984.

This kind of evidence cannot be reconciled in a model in which
stochastic volatility follows a standard AR(1) process with stationary
transitions.
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Application 3: Diminishing volatility (cont.)

We consider a model in which the volatility has both a stochastic and
deterministic components.

We modify the standard neoclassical stochastic growth model to
include a diminishing volatility of the productivity shock:

ln zt = ρ ln zt�1 + σt εt , σt =
B
tρσ
, εt � N (0, 1) ,

�B = a scaling parameter;
� ρσ = a parameter that governs the volatility of zt .

The standard deviation of the productivity shock Bσ/tρσ decreases

over time, reaching zero in the limit, limt!∞
Bσ

tρσ
= 0.
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Application 3: Diminishing volatility (cont.)

0 50 100 150 200 250

0.998

0.9985

0.999

0.9995

1

1.0005

1.001

1.0015

time

Va
ria

bl
e

Productivity
Capital
Consumption

Maliar and Maliar (2017) Part 2: Time-Dependent Models CEF 2017 Workshop 60 / 118



Application 4: Calibrating a growth model with a
parameter drift to unbalanced U.S. data

There is a large group of econometric methods that estimate and
calibrate economic models by constructing numerical solutions
explicitly, including

simulated method of moments (e.g., Canova (2007));
Bayesian estimation method (e.g., Smets and Wouters (2003), and Del
Negro, Schorfheide, Smets and Wouters (2007));
maximum likelihood method (e.g., Fernández-Villaverde and
Rubio-Ramírez (2007)).

Normally, the related literature

imposes restrictions on the model that lead to a balanced growth path,
converts the model into stationary model,
solves it for stationary Markov equilibrium by using conventional
methods.
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Shortcomings of balanced growth models

However, there are two potential problems with this approach.

First, the restrictions that are necessary to impose for balanced
growth might not be the empirically-relevant ones.

For example, we might want to analyze a model with nonhomothetic
utility and production functions, several kinds of technical progress and
parameter shifts and drifts.
However, any deviation from the restrictions in King, Plosser and
Rebelo (1988) destroys the property of balanced growth and hence,
destroys the conventional Markov stationary equilibria.

Second, the real world data are not always consistent with the
assumption of balanced growth, in particular, di¤erent variables might
grow at di¤erent and possibly time-varying rates.

We illustrate how EFP can be used to calibrate and estimate parameters in
an unbalanced growth model by using the data on U.S. economy.
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Time series to match

We took macroeconomic data on the U.S. economy from the
webpages of the Bureau of Economic Analysis and the Federal
Reserve Bank of St. Louis.

The sample spans over the period 1964:Q1 - 2011:Q4.

Investment is de�ned as nonresidential and residential private �xed
investment.

Consumption is de�ned as a sum of nondurables and services.

Capital is given by a sum of �xed assets and durables;

capital series are annual (in contrast to the other series which are
quarterly);
we interpolate annual series of capital to get quarterly series using
spline interpolation.

Output is obtained as a sum of consumption and investment.

We de�ate the constructed variables with the corresponding implicit
price de�ator and we convert them in per capita terms.
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The model with a depreciation rate drift

While the constructed data are grossly consistent with Kaldor�s
(1961) facts, we still observe visible di¤erences in growth rates across
variables.
We do not test whether or not such di¤erences in growth rates are
statistically signi�cant but formulate and estimate an unbalanced
growth model in which di¤erent variables can grow at di¤ering rates.
We extend the benchmark model to include time-varying depreciation
rate of capital,

max
fct ,kt+1gt=0,...,∞

E0
∞

∑
t=0

βtu(ct )

s.t. ct + kt+1 = Atztkα
t + (1� dtδt ) kt ,

ln δt = ρδ ln δt�1 + εδ,t , εδ,t � N
�
0, σ2εd

�
,

ln zt = ρz ln zt�1 + εz ,t , εz ,t � N
�
0, σ2εz

�
,

dtδt = a time-varying depreciation rate; dt = a trend component of
depreciation, dt = d0g td ; δt = a stochastic shock to depreciation.
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The model with a depreciation-rate drift

Our assumption of a time trend in depreciation rate is consistent with
the data of the Bureau of Economic Analysis.

The aggregate depreciation rate changes over time because the
composition of aggregate capital changes over time even if
depreciation rates of each type of capital are constant; see
Karabarbounis and Brent (2014).

In turn, shocks to depreciation rate can result from the economic
obsolescence of capital and are studied in, e.g., Liu, Waggoner and
Zha (2011) and Gourio (2012).

Gourio (2012) argues that a shock to the capital depreciation rate
plays an important role in accounting for the business cycle
�uctuations.
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Fitted time series
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Remarks on the estimation method

The main goal of this application is not to advocate the role of time
varying depreciation rate or some speci�c estimation and calibration
technique.

Rather, we would like to illustrate how estimation and calibration of
the parameters can be carried out in the context of a nested
�xed-point problem without assuming stationarity and balanced
growth.

Similar to the depreciation rate, we could have made all other
parameters time dependent, including the discount factor β, the share
of capital in production α and the parameters of the process for the
productivity level.

Furthermore, our simple estimation-calibration technique can be
replaced by more sophisticated econometric techniques such as
maximum likelihood, simulated method of moments, etc.
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New Keynesian Model
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Related literature

The questions of forward guidance and policy normalization are of interest
to both practitioners and academia.

Central banks and government agencies: Williamson (2015),
Orphanides (2015), Mendez and Murchinson (2015), Janet L. Yellen
(2015), Kryvtsov and Mendez (2015), Engen, Laubach and
Reifschneider (2015), etc.

Academic articles: Carlstrom, Fuerst, Paustian (2012), Campbell,
Evans, Fisher, Justiniano (2012), Caballero and Fahri (2014),
Christiano, Eichenbaum and Trabandt (2014, 2015), del Negro,
Giannoni, Patterson (2015), Di Maggio, Kermani and Palmer (2015),
McKay, Nakamura and Steinsson (2015), Hills, Nakata, Schmidt
(2016), Kaplan, Moll and Violante (2016), etc.

Forward guidance puzzle: the e¤ect of forward guidance is
unrealistically large.
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A new Keynesian (NK) model

A stylized new Keynesian model with Calvo-type price frictions and
a Taylor (1993) rule with the ZLB

Households choose consumption and labor.
Perfectly competitive �nal-good �rms produce goods using
intermediate goods.
Monopolistic intermediate-good �rms produce goods using labor and
are subject to sticky price (á la Calvo, 1983).
Monetary authority obeys a Taylor rule with zero lower bound (ZLB).
Government �nances a stochastic stream of public consumption by
levying lump-sum taxes and by issuing nominal debt.
6 exogenous shocks and 8 state variables =) The model is large
scale (it is expensive to solve or even intractable under conventional
global solution methods that rely on product rules).
This model is studied in "Merging Simulation and Projection
Approaches to Solve High-Dimensional Problems with an Application
to a New Keynesian Model" by Maliar and Maliar (QE, forthcoming).
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The representative household

The utility-maximization problem:

max
fCt ,Lt ,Btgt=0,...,∞

E0
∞

∑
t=0

βt exp
�
ηu,t

� "C 1�γ
t � 1
1� γ

� exp
�
ηL,t

� L1+ϑ
t � 1
1+ ϑ

#

s.t. PtCt +
Bt

exp
�
ηB ,t

�
Rt
+ Tt = Bt�1 +WtLt +Πt

where
�
B0, ηu,0, ηL,0, ηB ,0

�
is given.

�Ct , Lt , and Bt = consumption, labor and nominal bond holdings, resp.;
�Pt , Wt and Rt = the commodity price, nominal wage and (gross)
nominal interest rate, respectively;
�Tt = lump-sum taxes;
�Πt = the pro�t of intermediate-good �rms;
� β = discount factor; γ > 0 and ϑ > 0.
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The representative household

Stochastic processes for shocks

ηu,t and ηL,t = exogenous preference shocks;

ηB ,t = exogenous premium in the return to bonds;

ηu,t+1 = ρuηu,t + εu,t+1, εu,t+1 � N
�
0, σ2u

�
ηL,t+1 = ρLηL,t + εL,t+1, εL,t+1 � N

�
0, σ2L

�
ηB ,t+1 = ρBηB ,t + εB ,t+1, εB ,t+1 � N

�
0, σ2B

�
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Final-good producers

The pro�t-maximization problem:

Perfectly competitive producers
Use intermediate goods i 2 [0, 1] as inputs

max
Yt (i )

PtYt �
Z 1

0
Pt (i)Yt (i) di

s.t. Yt =
�Z 1

0
Yt (i)

ε�1
ε di

� ε
ε�1
, ε � 1 (4)

�Yt (i) and Pt (i) = quantity and price of an intermediate good i , resp.;
�Yt and Pt = quantity and price of the �nal good, resp.;
�Eq (4) = production function (Dixit-Stiglitz aggregator function).

Result 1: Demand for the intermediate good i : Yt (i) = Yt
�
Pt (i )
Pt

��ε
.

Result 2: Aggregate price index Pt =
�R 1

0 Pt (i)
1�ε di

� 1
1�ε
.
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Intermediate-good producers

The cost-minimization problem:

Are monopolistically competitive

Use labor as an input

Are hit by a productiviy shock

Are subject to sticky prices

min
Lt (i )

TC (Yt (i)) = (1� v)WtLt (i)

s.t. Yt (i) = exp
�
ηa,t

�
Lt (i)

ηa,t+1 = ρaηa,t + εa,t+1, εa,t+1 � N
�
0, σ2a

�
�TC = nominal total cost (net of government subsidy v);
�Lt (i) = labor input;
� exp

�
ηa,t

�
is the productivity level.
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Intermediate-good producers (price decisions)

Calvo-type price setting:
1� θ of the �rms sets prices optimally, Pt (i) = ePt , for i 2 [0, 1];
θ is not allowed to change the price, Pt (i) = Pt�1 (i), for i 2 [0, 1].

The pro�t-maximization problem of a reoptimizing �rm i :

maxePt
∞

∑
j=0

βj θjEt
n

Λt+j

hePtYt+j (i)� Pt+jmct+jYt+j (i)io
s.t. Yt (i) = Yt

�
Pt (i)
Pt

��ε

(5)

�Eq (5) is the demand for an intermediate good i ;
�Λt+j is the Lagrange multiplier on the household�s budget constraint;
�mct+j is the real marginal cost of output at time t + j .
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Government

The government budget constraint:

Tt +
Bt

exp
�
ηB ,t

�
Rt
= Pt

GYt
exp

�
ηG ,t

� + Bt�1 + vWtLt

� GYt
exp(ηG ,t)

= Gt is government spending;

� vWtLt is the subsidy to the intermediate-good �rms;
� ηG ,t is a government-spending shock,

ηG ,t+1 = ρG ηG ,t + εG ,t+1, εG ,t+1 � N
�
0, σ2G

�
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Natural equilibrium

"Natural equilibrium" - the model in which the potential
ine¢ ciencies have been eliminated:

Natural level of output YN ,t in the Taylor rule is a solution to a
planner�s problem

max
fCt ,Ltgt=0,...,∞

E0
∞

∑
t=0

βt exp
�
ηu,t

� "C 1�γ
t � 1
1� γ

� exp
�
ηL,t

� L1+ϑ
t � 1
1+ ϑ

#
s.t. Ct = exp

�
ηa,t

�
Lt � Gt

where Gt is given. This implies

YN ,t =

"
exp

�
ηa,t

�1+ϑ�
exp

�
ηG ,t

���γ exp
�
ηL,t

�#
1

ϑ+γ
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Summary of equilibrium conditions

FOCs of the intermediate-good �rms

St =
1

exp
�
ηa,t

� � exp �ηu,t + ηL,t
�
Lϕ
t Yt + βθEt fπε

t+1St+1g

Ft = C
�γ
t Yt + βθEt

�
πε�1
t+1Ft+1

	
St
Ft
=

�
1� θπε�1

t

1� θ

� 1
1�ε

Euler equation of the household�s problem

exp
�
ηu,t

�
C�γ
t = β exp

�
ηB ,t

�
RtEt

"
exp

�
ηu,t+1

�
C�γ
t+1

πt+1

#
Law of motion for the price distortion ∆t

∆t =

"
(1� θ)

�
1� θπε�1

t

1� θ

� ε
ε�1

+ θ
πε
t

∆t�1

#�1
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Summary of equilibrium conditions

We have

Stochastic processes for 6 exogenous shocks�
ηu,t , ηL,t , ηB ,t , ηa,t , ηG ,t , ηR ,t

	
.

7 endogenous equilibrium equations (5 above equations,

Ct =
�
1� G

exp(ηG ,t)

�
Yt , and Yt = exp

�
ηa,t

�
Lt∆t .

8 unknowns fCt ,Yt ,Rt , Lt ,∆t ,πt ,Ft ,Stg.
2 endogenous state variables f∆t�1,Rt�1g.
Thus, there are 8 (endogenous plus exogenous) state variables.
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Summary of equilibrium conditions

7 equations and 8 unknowns:

fCt , Lt ,Yt ,πt ,∆t ,Rt ,St ,Ftg

Number of unknown endogenous variables > Number of equations
=) The model is not closed.

To close the model, we need exogenous monetary policy.
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Monetary authority

Taylor rule with ZLB on the net nominal interest rate:

Rt = max

8<:1, R�

�
Rt�1
R�

�µ
"�

πt
π�

�φπ
�
Yt
YN ,t

�φy
#1�µ

exp
�
ηR ,t

�9=;
�R� = long-run gross nominal interest rate;
�πt = gross in�ation rate between t � 1 and t;
�π� = in�ation target;
�YN ,t = natural level of output;
� ηR ,t = monetary shock

ηR ,t+1 = ρRηR ,t + εR ,t+1, εR ,t+1 � N
�
0, σ2R

�
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Monetary policy normalization

How to normalize the monetary policy after the end of the
crisis?
The Great recession: ZLB and unconventional monetary policies
(forward guidance and quantitative easing).
Normalizing = switching back to Taylor rule.

Rt = max

8<:1, R�

�
Rt�1
R�

�µ
"�

πt
π�

�φπ
�
Yt
YN ,t

�φy
#1�µ

exp
�
ηR ,t

�9=;
Questions:

Should the Fed normalize policy now or later?
Should the Fed normalize policy gradually or all at once?
Should the regime shift be announced in advance?
Should the policy normalization be time or state dependent?:

) We need to analyze and compare di¤erent transitions out of the ZLB.
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Model with regimen switches: Davig and Leeper (2008)

Maliar and Maliar (2017) Part 2: Time-Dependent Models CEF 2017 Workshop 83 / 118



Model with parameter drift: EFP, Maliar et al. (2015)
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Model with parameter shift: EFP versus regime switches
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Model with parameter shift: EFP versus naive solution
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Forward guidance puzzle

"Forward guidance puzzle": an observation that output and
consumption are excessively sensitive to central bank announcements
about future interest rates in new Keynesian models.
�Del Negro, Giannoni and Patterson (2015).
McKay, Nakamura and Steinsson (2016):

xt = Et [xt+1]� [logRt � Et logπt+1 � logR�] ,
logπt = βEt [logπt+1] + κxt ,

logRt+j = Et+j [logπt+j+1] + logR� + εt ,t+j .

xt � logYt � logYN ,t ;
εt ,t+j = a t + j-period shock to the interest rate that is announced in
period t. This yields

xt = �
∞

∑
j=0

εt ,t+j .

Today�s shock to the interest rate has the same e¤ect as a shock that
happens a million years from now!
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Forward guidance puzzle

Source: McKay, Nakamura and Steinsson (2016).

Maliar and Maliar (2017) Part 2: Time-Dependent Models CEF 2017 Workshop 88 / 118



Why forward guidance puzzle was not observed in our
experiments

In some experiments, we �x interest rate for certain number of periods
but it does not a¤ect the present decisions (recall the last graph).

Thus, the "forward guidance puzzle" was not observed in our
experiments

Why?

This question is addressed in Maliar (2016) "Forward guidance puzzle
and turnpike theorem".
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Forward guidance and turnpike theorem

Maliar (2016) shows the following results:

The neoclassical growth model satis�es the turnpike theorem under
any parameterization, and future events have negligible e¤ects on the
present. =) Forward guidance will have no e¤ect!

A new Keynesian model may or may not satisfy the turnpike theorem
depending on parameterization. =) This determines whether or not
forward guidance puzzle is observed.

We �nd that the forward guidance puzzle holds under very special
parameterization (empirically implausible).

Generally, the new Keynesian economy satis�es the turnpike theorem,
and the forward guidance puzzle is not observed.

Also, we �nd that the e¤ect of forward guidance on output can be
detrimental depending on speci�c parameterization.

These �ndings hold in both linear and nonlinear models and are
robust to the introduction of uncertainty.
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Forward guidance and turnpike theorem (cont.)

Example 1. Taylor rule:

logRt+j = φEπ �Et+j [logπt+j+1]+ logR�+ εt ,t+j , φEπ = 1.000001.

10 20 30 40 50
1.088

1.089

1.09

1.091

1.092
Output

10 20 30 40 50
0.837

0.838

0.839

0.84

0.841
Consumption

10 20 30 40 50
1.088

1.09

1.092

1.094

1.096
Labor

10 20 30 40 50
1.005

1.01

1.015

1.02
Nominal interest rate

10 20 30 40 50
1

1.002

1.004

1.006

1.008
Inflation

10 20 30 40 50
1.006

1.008

1.01

1.012
Real interest rate

10 20 30 40 50
0.997

0.998

0.999

1
Dispersion

10 20 30 40 50
7

7.5

8

8.5
Variable S

10 20 30 40 50
7

7.5

8

8.5
Variable F

FG

Forward guidance puzzle is observed and the turnpike theorem is not
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Forward guidance and turnpike theorem (cont.)

Example 2. Taylor rule (φπ= 2.21, φEπ= 0, µ = 0.82, φy= 0.07):
logRt� logR�= µ logRt�1�µ logR�+(1� µ) [φEπ(Et logπt+1� logπtar )
+ φπ(logπt� logπtar ) + φy (logYt� logY Nt )]+ηRt .

50 100 150 200
1.086

1.088

1.09

1.092
Output

50 100 150 200
0.837

0.838

0.839

0.84

0.841
Consumption

50 100 150 200
1.086

1.088

1.09

1.092
Labor

50 100 150 200
1.009

1.01

1.011

1.012

1.013
Nominal interest rate

50 100 150 200
0.9995

1

1.0005

1.001

1.0015
Inflation

50 100 150 200
1.008

1.009

1.01

1.011

1.012
Real interest rate

50 100 150 200
0.99992

0.99994

0.99996

0.99998

1
Dispersion

50 100 150 200
7.25

7.3

7.35

7.4

7.45
Variable S

50 100 150 200
7.25

7.3

7.35

7.4
Variable F

FG

Forward guidance puzzle is not observed and the turnpike theorem is
satis�ed.
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Conclusion

Stationary Markov class of models is a dominant framework in recent
economic literature.

A shortcoming of this framework is that it generally restricts the
parameters of economic models to be constant, and it restricts the
behavior patterns to be time invariant.

In this paper, we construct a more �exible class of nonstationary
Markov models that allows for time-varying structural parameters and
decision functions.

We propose EFP framework for solving, calibrating, simulating and
estimating of parameters in such models.

We show how extended function path (EFP) can be used for
analyzing nonstationary and nonrecurrent transitions from one policy
to another.

Literally, EFP makes it possible to construct a unique historical path
of real-world economies.
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Computer codes

"EFP_MMTT_2015.zip" - Extended Function Path (EFP) method for
time-dependent models.

Computes an accurate solution to a test-model with labor augmenting
technological progress and balanced growth using a transformation to
stationary model.

Computes an EFP solution to a nonstationary test model directly,
without using the property of balanced growth.
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Stochastic environment formally

Time is discrete and in�nite, t = 0, 1, ... Let (Ω,F ,P) be a probability
space:

a) Ω = Π∞
t=0Ωt is a space of sequences fε0, ε1...g such that εt 2 Ωt for

all t, where Ωt is a compact metric space endowed with the Borel
σ��eld Et . Here, Ωt is the set of all possible states of the
environment at t and εt 2 Ωt is the state of the environment at t.

b) F is the σ�algebra on Ω generated by cylinder sets of the form
Π∞

τ=0Aτ, where Aτ 2 Eτ for all τ and Aτ = Ωτ for all but �nitely
many τ.

c) P is the probability measure on (Ω,F ).
We denote by fFtg a �ltration on Ω, where Ft is a sub σ��eld of F
induced by a partial history up of environment ht = (ε0, ..., εt ) 2 Πt

τ=0Ωτ

up to period t, i.e., Ft is generated by cylinder sets of the form Πt
τ=0Aτ,

where Aτ 2 Eτ for all τ � t and Aτ = Ωτ for τ > t. In particular, we
have that F0 is the course σ��eld f0,Ωg, and that F∞ = F .
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Stochastic process

We now provide de�nitions of stationary and Markov stochastic processes;
these de�nitions are standard and closely follow Stokey and Lucas with
Prescott (1989).

De�nition 1. (Stochastic process). A stochastic process on (Ω,F ,P) is
an increasing sequence of σ�algebras F1 � F2 � ... � F ; a measurable
space (Z ,Z); and a sequence of functions st : Ω ! Z for t � 0 such that
each st is Ft measurable.
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Stationary stochastic process

Related economic literature commonly imposes a restriction of stationarity
on stochastic processes.

De�nition 2. (Stationary stochastic process). A stochastic process s on
(Ω,F ,P) is called stationary if the unconditional probability measure

Pt+1,...,t+n (S) = P (fε 2 Ω : [st+1 (ε) , ..., st+n (ε)] 2 Sg) (6)

is independent of t for all S 2 Zn, t � 0 and n � 1.
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Stochastic process with stationary transitions

A related notion of stationarity is the property of stationary transitions.
We denote by Pt+1,...,t+n (S jst = st , ..., s0 = s0) the probability of the
event fε 2 Ω : [st+1 (ε) , ..., st+n (ε)] 2 Sg, given that the event
fε 2 Ω : st = st (ε) , ..., s0 = s0 (ε)g occurs.

De�nition 3. (Stochastic process with stationary transitions). A
stochastic process s on (Ω,F ,P) has stationary transitions if the
conditional probabilities

Pt+1,...,t+n (S jst = st , ..., s0 = s0) (7)

are independent of t for all S 2 Zn, ε 2 Ω, t � 0 and n � 1.

The assumption of stationary transition probabilities (7) implies the
property of stationarity (6) provided that the corresponding unconditional
probability measures exist.

Maliar and Maliar (2017) Part 2: Time-Dependent Models CEF 2017 Workshop 98 / 118



Markov process

In general, Pt+1,...,t+n (S) and Pt+1,...,t+n (S j�) depend on the entire
history of the events up to t (i.e., the stochastic process st is measurable
with respect to the sub σ��eld Ft). However, history-dependent processes
are di¢ cult to analyze in a general case. It is of interest to distinguish
special cases in which the dependence on history has relatively simple and
tractable form. A well-known case is a class of Markov processes.

De�nition 4. (Markov process). A stochastic process s on (Ω,F ,P) is
(�rst-order) Markov if

Pt+1,...,t+n (S jst = st , ..., s0 = s0) = Pt+1,...,t+n (S jst = st ) , (8)

for all S 2 Zn, t � 0 and n � 1.

The key property of a Markov process is that it is memoryless, namely, all
past history (st , ..., s0) is irrelevant for determining the future realizations
except of the most recent past st .
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Finite horizon version of the economy and its feasible
program

Consider a �nite horizon version of the economy (1)�(3) with a given
terminal condition for capital kT :

max
fct ,kt+1gTt=0

E0

"
T

∑
t=0

βtut (ct )

#
(9)

s.t. ct + kt+1 = (1� δ) kt + ft (kt , zt ) (10)

zt+1 = ϕt (zt , εt+1) , (11)

initial condition (k0, z0) and terminal condition kT are given.

De�nition A1 (Feasible programs in the �nite horizon economy). A
feasible program in the �nite horizon economy is a pair of adapted (i.e.,
Ft measurable for all t) processes fct , ktgTt=0 such that given initial
condition k0 and a partial history hT = (ε0, ..., εT ), these processes reach
a given terminal condition kT at T and satisfy ct � 0, kt � 0 and (10),
(11) for all t = 1, ...T .
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Optimal program in the �nite horizon economy with a zero
terminal condition

Let =T ,0 denote a set of all �nite horizon feasible programs from given
initial capital k0 and given partial history hT � (ε0, ..., εT ) that attain
given kT = 0 at T .

De�nition A2 (Optimal program in the �nite horizon model). A feasible

�nite horizon program
n
cT ,0t , kT ,0t

oT
t=0

2 =T ,0 is called optimal if

E0

"
T

∑
t=0

βt
n
ut (c

T ,0
t )� ut (ct )

o#
� 0 (A1)

for every feasible process fct , ktgTt=0 2 =T ,0.

The existence result for the �nite horizon economy with a zero terminal
condition is established using Bellman equation approach (see Mitra and
Nyarko (1991), Theorem 3.1) and Euler equation approach (see Majumdar
and Zilcha (1987), Theorems 1 and 2).
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Lemma 1

We next show that under terminal condition kT ,0T = kT = 0, the optimal
program in the �nite horizon economy has a well-de�ned limit.

Lemma 1. A �nite horizon optimal program
n
cT ,0t , kT ,0t

oT
t=0

2 =T ,0 with
a zero terminal condition kT ,0T = 0 converges to a limit program�
c limt , k limt

	∞
t=0 when T ! ∞, i.e.,

k limt � lim
T!∞

kT ,0t and c limt � lim
T!∞

cT ,0t , for t = 0, 1, ... (A2)
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Proof of Lemma 1 (I)

i) Extending time horizon from T to T + 1 increases T -period capital
of the �nite horizon optimal program, i.e., kT+1,0T > kT ,0T .
�To see this, note that the model with time horizon T has zero
(terminal) capital kT ,0T = 0 at T .
�When time horizon is extended from T to T + 1, the model has
zero (terminal) capital kT+1,0T+1 = 0 at T + 1 but it has strictly
positive capital kT+1,0T > 0 at T ; this follows by the Inada
conditions�Assumption 4.
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Proof of Lemma 1 (II)

ii) The optimal program for the �nite horizon economy has the following
property of monotonicity with respect to the terminal condition:
� If fc 0t , k 0tg

T
t=0 and fc 00t , k 00t g

T
t=0 are two optimal programs for the

�nite horizon economy with terminal conditions κ0 < κ00, then the
respective optimal capital choices have the same ranking in each
period, i.e., k 0t � k 00t for all t = 1, ...T .
�This follows by either Bellman equation (Mitra and Nyarko (1991))
or Euler equation (Majumdar and Zilcha (1987)) or lattice
(Hopenhayn and Prescott (1992)) programming techniques.

�Hence,
n
kT ,0t

oT
t=0

shifts up (weakly) in a pointwise manner when

T increases to T + 1, i.e., kT+1,0t � kT ,0t for t � 0.
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Proof of Lemma 1 (III)

iii) By construction, capital from the optimal program
n
cT ,0t , kT ,0t

oT
t=0

is

bounded from above by the capital accumulation process
f0, kmaxt gTt=0, i.e., k

T ,0
t � kmaxt < ∞ for t � 0.

�A sequence that is bounded and monotone is known to have a
well-de�ned limit. �
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Lemma 2

We show that the optimal program of the T -period stationary
economy converges to the same limit program as the optimal program
of the �nite horizon economy with a zero terminal condition.

Let =T denote a set of all feasible �nite horizon programs that
attains a terminal condition of the T -period stationary economy.

We assume the same initial capital (k0, z0) and the same partial
history hT � (ε0, ..., εT ) as those �xed for the �nite horizon economy.

Lemma 2. The optimal program of the T-period stationary economy�
cTt , k

T
t

	T
t=0 2 =

T converges to a unique limit program�
c limt , k limt

	∞
t=0 2 =

∞ de�ned in (A2) as T ! ∞ i.e., for all t � 0

k limt � lim
T!∞

kTt and c limt � lim
T!∞

cTt . (A3)
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Proof of Lemma 2 (I)

i) Observe that:
�The optimal program of the T -period stationary economy has a
positive capital stock kTT > 0 at T ;
� (This is because the terminal capital is generated by the capital
decision function of a stationary version of the model);

�But for the optimal program
n
cT ,0t , kT ,0t

oT
t=0

2 =T ,0 of the �nite
horizon economy, it is zero by de�nition, kT ,0T = 0.

ii) The property of monotonicity with respect to terminal condition
implies that if kTT > k

T ,0
T , then kTt � kT ,0t for all t = 1, ...,T ; see ii)

of the proof to Lemma 1.
iii) Fix some τ 2 f1, ...,Tg. We show that up to τ,

�
cTt , k

T
t

	τ

t=0 does

not give higher expected utility than
n
cT ,0t , kT ,0t

oτ

t=0
, i.e.,

E0

"
τ

∑
t=0

βt
n
ut
�
cTt
�
� ut (cT ,0t )

o#
� 0. (A4)
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Proof of Lemma 2 (II)

�Toward contradiction, assume that it does, i.e.,

E0

"
τ

∑
t=0

βt
n
ut
�
cTt
�
� ut (cT ,0t )

o#
> 0. (A5)

�Consider a new process

fc 0t , k 0tg
τ
t=0 �

�
cTt , k

T
t

	τ�1
t=0 [

n
cTτ + k

T
τ � kT ,0τ , kT ,0τ

o
�(it follows

�
cTt , k

T
t

	T
t=0 2 =

T up to period τ � 1 and that drops down at τ

to match kT ,0τ of the �nite horizon program
�
cTt , k

T
t

	T
t=0 2 =

T ,0).

�By monotonicity in part ii), we have kTτ � kT ,0τ � 0, so that

E0

"
τ

∑
t=0

βt
n
ut
�
c 0t
�
� ut

�
cTt
�o#

= E0
h

βτ
n
ut
�
cTτ + k

T
τ � kT ,0τ

�
� ut

�
cTτ
�oi

� 0, (12)

where the last inequality follows by Assumption 2 of strictly increasing ut .
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Proof of Lemma 2 (III)

iv) By construction fc 0t , k 0tg
τ
t=0 and

n
cT ,0t , kT ,0t

oτ

t=0
reach the same

capital kT ,0τ at τ.
�Let us extend the program fc 0t , k 0tg

τ
t=0 to T by assuming that it

follows the process
n
cT ,0t , kT ,0t

oT
t=0

from the period τ + 1 up to T ,

i.e., fc 0t , k 0tg
T
t=τ+1 �

n
cT ,0t , kT ,0t

oT
t=τ+1

.

�Then, we have

E0

"
T

∑
t=0

βt
n
ut
�
c 0t
�
� ut (cT ,0t )

o#
= E0

"
τ

∑
t=0

βt
n
ut
�
c 0t
�
� ut (cT ,0t )

o#

� E0

"
τ

∑
t=0

βt
n
ut
�
cTt
�
� ut

�
cT ,0t

�o#
> 0, (A7)

where the last two inequalities follow by result (??) and assumption
(A5), respectively.
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Proof of Lemma 2 (IV)

�Thus, we obtain a contradiction: The constructed program
fc 0t , k 0tg

T
t=0 2 =T ,0 is feasible in the �nite horizon economy with a zero

terminal condition, k 0T = 0, and it gives strictly higher expected utility

than the optimal program
n
cT ,0t , kT ,0t

oT
t=0

2 =T ,0 in that economy.

v) Holding τ �xed, we compute the limit of (A4) by letting T go to
in�nity:

lim
T!∞

E0

"
τ

∑
t=0

βt
n
ut
�
cTt
�
� ut (cT ,0t )

o#
=

lim
T!∞

E0

"
τ

∑
t=0

βtut
�
cTt
�#
� E0

"
τ

∑
t=0

βtut
�
c limt

�#
� 0. (A8)
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Proof of Lemma 2 (V)

vi) The last inequality implies that for any τ � 1, the limit program�
c limt , k limt

	∞
t=0 2 =

∞ of the �nite horizon economyn
cT ,0t , kT ,0t

oT
t=0

2 =T ,0 with a zero terminal condition kT ,0T = 0

gives at least as high expected utility as the optimal limit program�
cTt , k

T
t

	T
t=0 2 =

T of the T -period stationary economy.
�Since Assumptions 1-8 imply that the optimal program is unique,
we conclude that

�
c limt , k limt

	∞
t=0 2 =

∞ is a unique limit of the

optimal program
�
cTt , k

T
t

	T
t=0 2 =

T of the T -period stationary
economy. �
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Lemma 3

We now show a connection between the optimal programs of the
�nite horizon and in�nite horizon economies.

Namely, we show that the �nite horizon economy with a zero terminal
condition kT ,0T = 0 converges to the nonstationary in�nite horizon
economy as T ! ∞.

Lemma 3. The limit program
�
c limt , k limt

	∞
t=0 is a unique optimal program

fc∞
t , k

∞
t g∞

t=0 2 =∞ in the in�nite horizon nonstationary economy (1)�(3).

Maliar and Maliar (2017) Part 2: Time-Dependent Models CEF 2017 Workshop 112 / 118



Proof of Lemma 3 (I)

i) Toward contradiction, assume that
�
c limt , k limt

	∞
t=0 is not an optimal

program of the in�nite horizon economy fc∞
t , k

∞
t g∞

t=0 2 =∞.
�By de�nition of limit, there exists a real number ε > 0 and a
subsequence of natural numbers fT1,T2, ...g � f0, 1, ...g such that
fc∞
t , k

∞
t g∞

t=0 2 =∞ gives strictly higher expected utility than the limit
program of the �nite horizon economy

�
c limt , k limt

	∞
t=0, i.e.,

E0

"
Tn

∑
t=0

βt
n
ut (c∞

t )� ut (c limt )
o#

> ε for all Tn 2 fT1,T2, ...g .

(A9)
ii) Let us �x some Tn 2 fT1,T2, ...g and consider any �nite T � Tn.
�Assumptions 1-8 imply that k∞

T > 0, while k
T ,0
T = 0 by de�nition of

the �nite horizon economy with a zero terminal condition.
�The monotonicity of the optimal program with respect to a terminal
condition implies that if k∞

T > k
T ,0
T , then k∞

t � kT ,0t for all
t = 1, ...,T ; see part ii) of the proof of Lemma 1.

Maliar and Maliar (2017) Part 2: Time-Dependent Models CEF 2017 Workshop 113 / 118



Proof of Lemma 3 (II)

iii) Following the arguments in iii). of the proof of Lemma 2, we can
show that up to period Tn, the optimal program fc∞

t , k
∞
t gTnt=0 does

not give higher expected utility than
n
cT ,0t , kT ,0t

oTn
t=0
, i.e.,

E0

"
Tn

∑
t=0

βt
n
ut (c∞

t )� ut (cT ,0t )
o#

� 0 for all Tn. (A10)

iv) Holding Tn �xed, we compute the limit of (A10) by letting T go to
in�nity:

lim
T!∞

E0

"
Tn

∑
t=0

βt
n
ut (c∞

t )� ut (cT ,0t )
o#

= E0

"
Tn

∑
t=0

βtut (c∞
t )� βtut

�
c limt

�#
� 0 for all Tn. (A11)

However, result (A11) contradicts to our assumption in (A9).
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Proof of Lemma 3 (III)

v) We conclude that for any subsequence fT1,T2, ...g � f0, 1, ...g, we
have

E0

"
Tn

∑
t=0

βt
n
ut (c∞

t )� ut (c limt )
o#

� 0 for all Tn. (A12)

However, under Assumptions 1-8, the optimal program
fc∞
t , k

∞
t g∞

t=0 2 =∞ is unique, and hence, it must be that
fc∞
t , k

∞
t g∞

t=0 coincides with
�
c limt , k limt

	∞
t=0 for all t � 0. �
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Theorem 3 (turnpike theorem)

We now combine the results of Lemmas 1-3 together into a
turnpike-style theorem.

Lemma 1 shows that the optimal program of the �nite horizon

economy with a zero terminal condition
n
cT ,0t , kT ,0t

oT
t=0

2 =T ,0

converges to the limit program
�
c limt , k limt

	∞
t=0.

Lemma 2 shows that the optimal program of the T -period stationary
economy

�
cTt , k

T
t

	T
t=0 also converges to the same limit program�

c limt , k limt
	∞
t=0.

Lemma 3 shows that the limit program of the �nite horizon
economies

�
c limt , k limt

	∞
t=0 is optimal in the nonstationary in�nite

horizon economy.

Then, it must be the case that the limit optimal program of the
T -period stationary economy

�
cTt , k

T
t

	T
t=0 is optimal in the in�nite

horizon nonstationary economy. This argument is formalized below.
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Proof of Theorem 2

Let us �x a real number ε > 0 and a natural number τ such that
1 � τ < ∞.

i) Lemma 1 shows that
n
cT ,0t , kT ,0t

oT
t=0

2 =T ,0 converges�
c limt , k limt

	∞
t=0 as T ! ∞. Then, de�nition of limit implies that

there exists T1 > 0 such that
���kT ,0t � k limt

��� < ε
3 for t = 0, ..., τ.

ii) Lemma 2 implies that
�
cTt , k

T
t

	T
t=0 also converges to limit program�

c limt , k limt
	∞
t=0 as T ! ∞. Then, there exists T2 > 0 such that��k limt � kTt
�� < ε

3 for t = 0, ..., τ.

iii) Lemma 3 implies the program
n
cT ,0t , kT ,0t

oT
t=0

2 =T ,0 converges to
the in�nite horizon optimal program fc∞

t , k
∞
t g∞

t=0 as T ! ∞. Then,

there exists T3 > 0 such that
���kT ,0t � k∞

t

��� < ε
3 for t = 0, ..., τ.
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Proof of Theorem 2 (cont.)

iv) Then, the triangular inequality implies���kTt � k∞
t

��� = ���kTt � k limt + k limt � kT ,0t + kT ,0t � k∞
t

���
�
���kTt � k limt ���+ ���k limt � kT ,0t

���+ ���kT ,0t � k∞
t

��� < ε

3
+

ε

3
+

ε

3
= ε,

for T � T (ε, τ) � max fT1,T2,T3g. �
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