

Agent-based Macroeconomics: Model Design, Empirical Grounding and Policy Analysis

Herbert Dawid, Philipp Harting Bielefeld University

Pre-Conference Workshop June 27, 2017, CEF 2017, New York City

Outline of the Workshop

- 1. Short Motivation and Prelude: Complexity and Economic Modeling
- 2. Model Design
 - i. Approaches for Designing Behavioral Rules
 - ii. [Interaction Protocols]

Break (15mins)

- 3. Empirical Validation and Calibration
- 4. Analysis of Simulation Output

Break (15mins)

- 5. Policy Analysis: an illustrative example
- 6. Fostering Transparency, Reproducibility and Replication: the ETACE Virtual Appliance (VA)
 - i. Short Demo
 - ii. Exercise Session (for those who want to play with the VA)

1. Complexity and Economic Modeling

The economy is a very complex system of heterogeneous

interacting agents...

Complexity and Economic Modeling

- How much of this complexity should be captured in a model?
 - Which type of agents should be included (firms, households, banks,..)
 - Which properties characterize different type of agents?
 - What kind of rules and protocols govern exchange of goods and information?
 - How do agents determine their actions?

Complexity and Economic Modeling

- Most standard models in the economic literature rely on a very parsimonious approach (be careful, lots of recent developments!):
 - Agents of the same type are identical ('representative agent') or vary only with respect to a few parameters
 - Exchange of goods on frictionless spot markets
 - Agents have rational expectations
 - Behavior is determined according to some equilibrium concept based on (inter-temporal) optimization
- This approach yields workhorse models for policy analysis like Dynamic Stochastic Equilibrium Models (DSGE), Endogenous Growth Models, New Economic Geography Models,....

Complexity and Economic Modeling

- Useful approach for a large set of issues, but...
 - Set of strong assumptions, some with little empirical (micro-) foundation, also some conceptual problems (see Kirman, 1992)
 - Matching of empirical stylized facts often strongly depends on calibration of exogenous shocks, sometimes (seemingly model inconsistent) ad-hoc additions (Calvo pricing, rule-of-thumb consumers) are needed
 - Emerging properties, like contagion or rapid phase transitions typically cannot be captured
 - Focus often on long-run equilibria (e.g. balanced growth paths)
 - Policy makers are not always convinced...

J.-C. Trichet (ECB Central Banking Conference, Nov. 2010):

'When the crisis came, the serious limitations of existing economic and financial models immediately became apparent.[...] Macro models failed to predict the crisis and seemed incapable of explaining what was happening to the economy in a convincing manner. As a policy-maker during the crisis, I found the available models of limited help. In fact, I would go further: in the face of the crisis, we felt abandoned by conventional tools. [...]

We need to deal better with heterogeneity across agents and the interaction among those heterogeneous agents. We need to entertain alternative motivations for economic choices. [...] Agent-based modelling dispenses with the optimisation assumption and allows for more complex interactions between agents. Such approaches are worthy of our attention.'

Agent-based Approach to Economic Modeling

- Each relevant economic actor represented by an agent (many agents of identical type)
- Rule-based decision making by agents
- Agents interact through explicitly given interaction protocols (market rules, information flow channels, ..)
- Dynamics on the meso- (market/industry) and on the macrolevel is generated by aggregating over the actions/stocks of all agents in the model

Generic Setup of an Agent-based Model

- For each agent of each type define:
 - set of decisions to be taken
 - set of internal states (e.g. wealth, skills, savings,..)
 - information agent might exchange with other agents
 - structure of each decision rule (inputs, how is decision made)
 - potential dynamic adjustment of internal states and decision rules
- Define interaction protocols for all potential interactions
- Define potential exogenous dynamics of parts of the economic environment (e.g. demand in partial market models, or technological frontier in macro models,..)
- Provide parametrization and initialization of all state variables

Main ,Families' of Macro Agent-based Models (MABMs)

- Ashraf, Gershman, Howitt (AGH)
- Complex Adaptive Trivial Systems (CATS) (Delli Gatti, Gallegati et al.)
- Eurace@Unibi (EUBI) (Dawid et al.)
- Eurage at Genoa (EUGE) (Cincotti, Raberto et al.)
- Keynes meeting Schumpeter (KS) (Dosi, Fagiolo et al.)
- JAMEL Model (Seppecher, Salle)
- Lagom Model (Jaeger, Mandel,...)

The general architecture of a MABMs

- Agents: Households, Firms, Banks (and the public sector: Government and the central bank).
- Markets: C-goods, K-goods, labour (N), credit (L), assets.
- K-firms produce capital (K-goods) sold to C-firms.
- Both types of firms use bank loans to finance production and investment.

	Households	Firms	Banks
C-goods	H/C/d	F/C/s	
K-goods		F/K/d,s	
Labour	H/N/s	F/N/d	
Credit		F/L/d	B/L/s
Assets	H/A/d	F/A/s	

2. Model Design

- i) Approaches for Designing Behavioral Rules
- How to model individual behavior?
- In ABMs (like in the real world), locally constructive actions' (Sinitskaya & Tesfatsion, 2015) have to be implemented, constrained by their
 - interaction network
 - information beliefs
 - physical states.
- Hence, modeling in ABMs typically relies on behavioral rules and heuristics rather than on dynamic optimization under full information about model dynamics.
- Potential problem of ,Wilderness of Bounded Rationality'.

Long history of discussion of this issue in Economics:

- Schumpeter(1911): all economic behavior is governed by rules, which are based on own and foreign experience...
- Alchian (1950): evolutionary selected rules should be considered as guiding rules for action.
- Friedman (1953): as-if argument
- Simon (1959): Satisficing "The entrepreneur might not care to maximize, but may simply want to earn a return that he regards as satisfactory.."
- Cyert & March (1963) 'A Behavioral Theory of the Firm', consider operational procedures developed by actual firms

Long history of discussion of this issue in Economics:

- Nelson & Winter (1982): firm behavior based on 'routines' on different levels (operational, strategic)
- Lucas (1986): 'In general terms, we view or model an individual as a collection of decision rules [...] Technically, I think of economics as studying decision rules that are steady states of some adaptive process, decision rules that are found to work over a range of situations and hence are no longer revised appreciably as more experience accumulates.'
- Gigerenzer & Gaissmaier (2011), Gigerenzer (2016):
 'Ecological Rationality of Heuristics'.

Fixed decision rules

- Plausible heuristic rules (e.g. Nelson & Winter (1982), Ashraf et al. (2011), Assenza et al. (2015))
- Empirically observed decision Heuristics (e.g. Artinger & Gigerenzer (2017))
- Documented heuristic firm procedures (Dawid and Reimann (2004), Dawid and Harting (2011)): Management Science Approach
- Actions evolving over time
 - Individual learning (e.g. Arifovic (1994), Arifovic & Ledyard (2010))
 - Social learning (e.g. Dawid & Kopel (1996), Vriend (2000))
- Rules emerging over time (e.g. Dosi et al. (1999), Midgley et al. (1997), Arthur et al. (1997))

Let us consider two examples of decisions present in all MABMs:

- 1. Pricing/Quantity Decision by C-Firms
- 2. Savings Decision by Households

Fixed decision rules: E.g. Pricing and Production Quantity

- Plausible heuristic rules
 - Ashraf et al. (2011, AGH):
 - price: fixed mark-up, adjusted only if inventory/expected sales ratio becomes too small/large
 - quantity: expected sales plus inventory adjustment
 - Dosi et al. (2010, KS)
 - price: mark-up evolving based on firm's market share
 - quantity: proportional to expected demand

Fixed decision rules: E.g. Pricing and Production Quantity

- Plausible heuristic rules
 - Assenza et al. (2015, CATS)

 Δ_{it} : difference btw. production and actual demand in t

Quantity:
$$Y_{i,t+1}^* = \frac{Y_{i,t} - \rho \Delta_{it}}{Y_{i,t} - \rho \Delta_{it}} \quad \Delta_{i,t} \leq 0, P_{i,t} \geq P_t$$
$$\Delta_{i,t} = \frac{Y_{i,t} - \rho \Delta_{it}}{Y_{i,t} - \rho \Delta_{it}} \quad \Delta_{i,t} > 0, P_{i,t} < P$$

Price:
$$P_{i,t+1} = \frac{P_{i,t}(1+\eta_{i,t+1})}{P_{i,t}(1-\eta_{i,t+1})} \quad \Delta_{i,t} \le 0, P_{i,t} < P_{t}$$
$$\Delta_{i,t} > 0, P_{i,t} \ge P_{t}$$

 $\eta_{i,t}$: uniformly distributed in positive interval

Documented heuristic firm procedures:

- 'Management Science Approach'
 - For many types of firm decisions standard Management literature provide well documented approaches to tackle the problem.
 - Although often derived from some optimization considerations these approaches are typically heuristic.
 - Examples:
 - Pricing: economic value analysis, break-even analysis [Nagle et al. (2011)]
 - Production Quantity: Production Planning Heuristics: (Q,R)-policies, Stock-Out-Risk [Silver et al. (1998)]
 - Market Selection: BCG Matrix [Kotler & Keller (2009)]

Fixed decision rules: E.g. Pricing and Production Quantity

- Documented heuristic firm procedures:
- Pricing: economic value analysis [Nagle et al. (2011)] used in Eurace@Unibi model (e.g. Dawid et al. 2016, EUBI)
- Different steps:
 - Market analysis:
 - i) estimation of trend of overall market size
 - simulated purchasing surveys to estimate demand for different choices of the own price
 - 2. Determination of planned output for different prices.
 - 3. Production cost estimation for induced output quantities for different prices (taking into account potentially needed investments).
 - 4. Compare profits across considered menu of prices.

Fixed decision rules: E.g. Pricing and Production Quantity

- Documented heuristic firm procedures:
- Quantity Decision: Dawid et al. (2016, EUBI)
- Firms face uncertain demand (without knowing the exact structure of the demand generating process) and face potential stock-out costs
- -> standard problem in Operations Management ('Newsvendor Problem')
- -> Production Planning Heuristics in the OM literature: (Q,R)-policies
 - determine optimal stock-out probability (depending on stock-out costs, inventory costs)
 - estimate distribution of firm demand
 - determine target inventory level such that chosen stock-out probability is realized.

Fixed decision rules: E.g. Pricing and Production Quantity

Comparison of dynamics of individual output with Eurace@Unibi pricing heuristic and const. mark-up:

endog. mark-up

const. mark-up

Fixed decision rules: E.g. Pricing and Production Quantity

- Empirically observed decision Heuristics
 - E.g. Artinger & Gigerenzer (2017): pricing heuristics of car dealers
 - Based on online observations and interviews with car dealers
 - Derive on this basis an aspiration level heuristic:

$$p(t) = (1 + \alpha) p_{g,\min,t} \gamma^{m-1} \quad \text{if } (m-1)\beta \le t < m\beta$$

 $P_{g,\min,t}$: minimum price in a group of matching cars

 α : initial increase relative to minimum price on the market

 β : time interval after which price is reduced if unsold

 γ : factor by which price is reduced

Parameters estimated depending on market conditions

Fixed decision rules: E.g. Households Consumption Budget

- AGW, CATS: fixed fraction of wealth
- Eurace@Unibi, LAGOM: buffer-stock rule: mean past income + adjustment wrt wealth/income target ratio (inspired by Deaton (1991), Carroll & Summers (1991)).
- JAMEL: buffer stock rule with target ratio depending on consumer sentiment.
- KS: HHs consume their entire income.

Actions evolving over time:

- Action is not determined by a rule, but chosen 'as such' by the firm every period based on own (and others) past success of different actions.
- Typical setup:
 - In each period firm selects (stochastically) from a population of action values
 - Each action has a fitness (or strength) which influences selection probability
 - The action's fitness and the set of considered actions is updated over time based on their (relative) fitness.
- Prime examples of such procedures:
 - Reinforcement Learning
 - Genetic Algorithms
 - Individual Evolutionary Learning
- Comparison of generated dynamics with that of human subject experiments!

Rules evolving over time:

- Different approaches in the literature:
 - Classifier Systems
 - Genetic Programming
 - Neural Networks
- Large functional flexibility, weak ex-ante assumptions about (functional) form of the rule have to be made.
- Potential 'black-box' problem: emerging rules not straight-forward to interpret.
- Hard to link to empirical/experimental evidence on updating of rules.

2.ii Interaction Protocols

- Wide variety of potential approaches to model interactions on different markets:
 - Goods Markets: posted prices, individual bargaining, auctions, spot markets
 - Financial Markets: order books, market makers, spot markets
 - Labor Markets: search and matching, posted wages, bargaining
 - Electricity Markets: double auctions, clearing houses
 - **...**
- Additionally, agents might interact by e.g. exchanging information (social networks, spatial structure,..)
- Most suitable choice of interaction protocols and detail of institutional representation depends on strongly on underlying research question!

Coffee Break

Main challenges:

- Path dependent and stochastic, complex dynamics of simulation output
- Missing systematic concept of 'good match with empirical data'
- The number of parameters might be large

Main approaches:

- Indirect calibration: reproducing stylized facts (see e.g. Dosi et al. (2010, 2013, 2014), Dawid et al. (2014, 2018))
- Calibration, systematic search in the parameter space (Grazzini et al., 2015, 2017), Barde (2016), Barde & van der Hoog (2017), Guerini & Moneta (2017), Lamperti et al. (2017).

Different approaches to combine empirical information and AB modeling (Janssen & Ostrom (2006)):

- Indirect Calibration Approach (see Windrum et al. 2007)
 - Identify set of stylized facts to be reproduced/explained (industry/macro level)
 - Incorporate empirical and experimental evidence about principles underlying real-world behaviors
 - Restrict parameter space and initial conditions to sets where simulation output matches stylized facts
 - Deepen understanding of causal mechansisms that underlie the studied stylized facts
- Calibrated model can be used to explore additional stylized facts (to be tested empirically) or to study effects of institutional changes, policy measures,...

- Reproducing Empirical Stylized Facts (ESFs)
 - Disciplining effect for model and parameter choices
 - Adds credibility for non-economist audiences
 - Ability to reproduce ESF of different types and on different levels
 of aggregation -> one of the selling points of ABMs
 - What does reproduction exactly mean?
 - Bias in selecting 'key stylized facts'?

Example: some stylized facts reproduced by the Eurace@Unibi

- How to quantify, whether growth rate dynamics in the model is ,close' to observations in the data?
 - Compare means, distribution, autocorelation structure
 - e.g. Eurace@Unibi vs. US Data (1955 2001):

	Eurace@Unibi	US- Data
Av. Growth Rate	1.6%	1.8%
Volatility	1.54%	1.66%
One-quarter Autocorelation	0.9	0.86

Dynamic Properties and Stylized Facts: Output and Consumption

Eurace@Unibi (black: output, red: cons.)

US Data (Stock & Watson, 1999) (light: GDP, bold: cons.) bandpass filtered

Dynamic Properties and Stylized Facts: Output and Investment

Eurace@Unibi

(black: output, red: inv.)

US Data (Stock & Watson, 1999)

(light: GDP, bold: inv.)

bandpass filtered

Dynamic Properties and Stylized Facts: Firm Size Distribution (Sales)

Eurace@Unibi

Spanish Data (Segarra/Teruel (2012))

Dynamic Properties and Stylized Facts: Beveridge Curve

Vacancy rate .03 .025.02 Beveridge curve .015 .08 Unemployment rate

Eurace@Unibi

U.S. (2001-2012) (Ghayad & Dickens, 2012)

Estimation, calibration, systematic search in the parameter space:

- General challenge: find parametrization of the model, such that its output matches 'optimally' the empirical data.
- General approaches:
 - Bayesian: start with some a-priori distribution in the parameter space and update based on available empirical data (Grazzini & Richiardi, 2017)
 - 2. Non-Bayesian: search systematically in the state space and compare different parameter constellation based on some 'distance measure' between simulation output and data.

Main challenges for estimating/calibrating ABMs

- Which distance measure?
 - Simulated method of moments (Gilli & Winker, 2003)
 - Simulated minimum distance (Grazzini & Richiardi, 2015)
 - Context Tree Weighting: estimated probability of data based on conditional state-transition probabilities from the model (Barde, 2016)
 - GSL-div: discretize time series output to finite set of 'symbols' and compare frequency of symbols in subintervals (Lamperti, 2017)
 - Generate Stoch.-Vector-Autoregressive (SVAR) estimation of model and data and determine the number of coefficients with equal sign (Moneta & Guerini, 2016)

Main challenges for estimating/calibrating ABMs

- Computational Effort
 - In order to calculate the distance between the model and the data, typically large batch runs are needed for each considered parameters setting
 - -> for large ABMs computational effort might be prohibitively large
 - -> 'meta models' might be used for estimation/calibration: simple statistical representations of the ABM capturing the main qualitative properties of the generated data, in particular the impact of certain parameter changes

Main challenges for estimating/calibrating ABMs

- Sampling of parameter space:
 - ABMs often have many parameters -> simple grid search in the high-dimensional parameter space often not feasible ('curse of dimension')
 - More efficient sampling methods can be used; should have space-filling and orthogonality properties: e.g. Nearly Orthogonal Latin Hypercubes (Salle & Yildizoglu, 2014)

Example: Barde & van der Hoog (2017)

- Calibration of Eurace@Unibi model using OECD data from 30 countries.
- Focus on 3 output variables (unemployment rate, output growth rate, inflation rate) and 8 key parameters.
- Comparison of simulated and empirical time series based on the Markov Information Criterion:
 - discretize state space
 - estimate conditional state-transition probabilities (context tree weigthing)
 - calculate score of empirical time series

Example: Barde & van der Hoog (2017): Eurace@Unibi

- Steps of the procedure:
 - Generate a set of 513 parameter vectors using Nearly-Orthogonal Latin Hypercube (NOLH) sampling.
 - 2. For each parameter set run the model 1000 times and save time series of the 3 target variables for all 513 * 1000 runs.
 - 3. Determine for each parameter setting conditional transition probabilities (context trees) using 99% of the runs.
 - Validate the obtained transition matrices using the remaining
 1% of the runs.
 - 5. For each country determine the ,score' under the transition probability derived for each parameter set.
 - 6. Determine for each country parameter set with the highest score (best fit).
 - [Search for high potential parameter sets between the sampled points using Kriging and determine score of these sets.]

Results for Germany

- Each run of the simulation model is one realization of a stochastic process. Observed dynamics might change from run to run even if all policy parameters remain unchanged.
- -> a change in a policy parameter can (like in the real world!)
 only influence the dynamics in a statistical sense (i.e. change the distribution of the outcomes)

- To make sensible statements about the effects of changes of parameters or the introduction of some policy measure a sound statistical analysis is needed!
- Most common approaches:
 - Graphical analysis comparing boxplots or means/medians with some confidence band for different parameters.
 - Statistical tests on equality of means of some meaningful indicators under different parameters: e.g. Wilcoxon Signed Rank Test.
 - Estimating dynamic statistical models: e.g. penalized splines

- Simple Example: N runs of ABM across different parameter settings, policy effect (0/1) varying over time.
- To represent the ABM runs consider the following data generating process:

$$Y_{t,p,i} = \sin(2\pi t/T) + \kappa_i \, \nu_{t,p,i} + \alpha (t/T)^2 I_{[pol=1]} + \varepsilon_{t,p,i}$$

 $\upsilon_{t,p,i}, \varepsilon_{t,p,i}$: i.i.d, Gaussian with mean 1, STD: $\sigma_{\upsilon}, \sigma_{\varepsilon}$

 $\alpha > 0$: strength of policy effect

 κ_i : run specific effect, uniform in [0,1]

- How can we identify the policy effect?
 - Graphical analysis showing evolution of mean and confidence bands with/without policy.
 - Boxplots of aggregated indicator (time average for each run)
 - Statistical tests on equality of medians with/without policy: Wilcoxon Signed Rank Test.
 - Estimating dynamic penalized splines model (simple GAM in R)

$$Y_{t,p,i} = S_0 + S(t) + I_{[pol=1]}S_{pol}(t) + \mathcal{E}_{t,p,i}$$

 $s(t), s_{pol}(t)$: weighted sums of cubic basis functions

 More advanced approach to capture run specific effects and potential path dependencies (GAMM in R)

$$Y_{t,p,i} = S_0 + S(t) + I_{[pol=1]}S_{pol}(t) + \eta_i^0 + \eta_i^1 t + \varepsilon_{t,p,i}$$

- Gain a clear understanding of the economic mechanisms:
 - search for causal chains by considering time series of micro/meso level variables
- Check robustness of parameter/policy effects
 - vary key parameters of the model and carry out the policy experiments across these variations
 - explore the ,limits' of the range of parameters where the obtained results qualitatively stay intact

Coffee Break

- Substanial increase in MABM work with policy focus since 2008:
 - Feedback between real and financial dynamics became policy focus.
 - Systemic considerations, network and contagion effects.
 - 'Workhorse MABMs' have been established as platform for policy analysis.
- Key policy domains:
 - Fiscal Policy
 - Monetary Policy
 - Financial Regulation and Crisis Resolution
 - Labor Market Policies
 - (Regional) Growth, Convergence and Cohesion Policy

- An illustrative example: the Eurace@Unibi model
- Main focus: improve understanding of interplay between
 - technological progress and diffusion
 - skill dynamics
 - investment
 - credit market dynamics
 - growth and inequality

Main features of the Eurace@Unibi model

- Networks and geographical structure
 - Regions located on grid, agents assigned to regions
 - Distribution of agents and their characteristics might differ between regions
 - Agents linked through firm-bank and social networks
- Empirical micro-foundation of agents' decision rules
 - relevant management literature ('Management Science approach')
 - empirical consumer behavior literature
- Explicit representation of interaction protocols on markets and regulatory institutions.

Economic Theory and Computational Economics

Consumption Good Production

- Production using (vintage structured) capital and labor.
- Complementarity between quality of capital goods and level of specific skills of workers.
- Workers acquire specific skills on the job when working in a firm with high quality (physical) capital.
- Workers differ wrt to their speed of on the job learning (general skills).

Technological Change and Diffusion

- Investment good producer (IGP): offers range of investment goods with different quality (vintages) (at differentiated prices).
- New vintages with improved quality are added to the product range following stochastic innovation cycles.
- Vintage choice of Consumption good producers (CPG):
 - logit choice model based on estimated future productivity of the vintage over a planning horizon
 - depends on the skills of the firm's employees (Piva & Vivarelli, 2009).

Consumption Goods Market

- Consumption goods producers offer (and store) goods at market outlets (,malls') at posted prices.
- Once every year CGPs adjust prices:
 - profit oriented pricing rules relying on simulated purchase surveys, see Nagle & Hogan, 2006)
 - -> endogenous mark-ups.
- Once every month CGPs decide on quantities to be delivered to the mall:
 - based on standard OM heuristics relying on estimates of the demand distribution

Labor market

- Firms post job vacancies based on planned output.
- Simple search and matching protocol.
- Wage offers vary across general skill groups.
- Wage offer: $w_{i,t,g} = w_{i,t}^{base} \overline{b}_{i,t,g}$
- Workers take into account commuting costs when comparing offers: $w_{i,t,g}(1-c)$
- -> Firms might be rationed on the labor market and there is frictional unemployment.

Credit Market

- Firms apply for bank loans if internal resources do not suffice to cover expenses.
- Banks are constrained in giving out loans and accepting risks by capital and liquidity requirements.
- Interest rate for loans determined as ECB rate plus (risk dependent) mark-up
- Central-bank provides standing facilities to banks at a base rate.
- Firms and households make deposits at bank at an interest rate marked-down from the base rate.

Government

- Collects income tax
- Pays out unemployment benefits
- Finances policies (e.g. subsidies)
- Tax rates in all regions are dynamically adjusted to reach a balanced budget

Some Technical Issues

- Asynchronous decision making and 'day to act' of agents
- Closedness of the model is ensured through the use of balance sheets for all agents.
- The model is implemented in FLAME (Flexible Large Scale Modelling Environment)

Policy issuess adressed using the Eurace@Unibi model:

- Policies fostering growth of lagging regions (with public debt trouble) in an economic union (Dawid et al., 2017).
- Impact of different kinds of bank regulations (van der Hoog & Dawid, 2017, van der Hoog, 2017)
- Effectiveness of EU cohesion policies (Dawid et al., 2013, 2014)
- Effect of social networks on wage inequality (Dawid & Gemkow, 2014)
- How is technological change and growth affected by stabilizing fiscal and regulatory policies? (Harting, 2015)
- Impact of spatial frictions on factor and goods markets for economic convergence and growth (Dawid et al., 2011)
- Implications of different spatial distributions of policy measures (Dawid et al. 2008, 2009)

5. Policy AnalysisCohesion Policy in the EU

Facilitation of convergence of per-capita income and productivity among European regions is one of the main goals of EU (economic) policy (about 35% of EU Budget spent for cohesion policies).

Policy Example: Cohesion Policy (Dawid, Harting and Neugart, 2013, 2014)

- 2 main policy instruments:
 - European Regional Development Fund (€ 201 bn, 2007-2013)
 - Direct aid to investments in companies
 - Infrastructure linked notably to research and innovation
 - **)**
 - 2. European Social Fund (€ 76 bn, 2007-2013)
 - Strengthening human capital
 - Adapting workers and enterprises
 - **...**

Regional differences persist not only with respect to percapita GDP but also wrt (intra-regional) income inequality:

- Consider 2 region version of Eurace@Unibi: R1 (high tech), R2 (low tech)
- In comparison with (high tech) R1 region R2 has
 - lower initial average quality of physical capital in firms
 - lower initial average specific skills of workers
 - lower distribution of general skills of workers
- Integrated consumption good market but separated labor markets.
- 2 institutional settings are considered
 - flexibility of labor market in R2 identical to that of R1 (replacement rate, adjustment speed of reservation wage of workers when unemployed)
 - 2. flexibility of labor market in R2 higher

Eurace@Unibi replicates qualitative patterns of evolution of per-capita output and Gini

(black: R1, red: R2 inflex LM, red dotted: R2 flex LM)

Firm Heterogeneity in the Low-Tech Region(inflex LM)

Ratio (high-prod./low-prod. firms) in R2 of average values of

- Policy question (inspired by ERDF measures): how important is it that investment subsidies are technologically, directed'?
- Considered Technology (Tech) Policy: Firms in R2 receive subsidies (20% of price) when acquiring physical capital Policy tries to incentivize firms to buy the best available capital vintage.

 α : fraction of firms in R2 that are induced by the policy to purchase highest vintage: $\alpha = 0.1, 0.2, 0.3$

What is the effect of α on the effectiveness of the policy in fostering convergence between regions?

Output (sep. & inflex LM)

(black: α =0, red: α =0.1, green: α =0.2, blue: α =0.3)

Explaining the underlying Mechanisms: Why do non-directed policies fail to foster convergence?

Effect of non-directed policy (α =0) under inflex LM on the ratio (R1/R2) of

Gini (sep. & inflex LM)

(black: α =0, red: α =0.1, green: α =0.2, blue: α =0.3)

Explaining the underlying Mechanisms: Why do targeted policies lead to a reduction of inequality in R2?

Effect of all tech-policies on the ratio (high-prod./low-prod. firms) of average values of

(black: α =0, red: α =0.1, green: α =0.2, blue: α =0.3)

- 6. Fostering Transparency, Reproducibility & Replication
- For newcomers to agent-based modeling entry costs are often very high:
 - developing own models from scratch is time consuming and requires strong programming skills
 - for existing models the code is often not available or not sufficiently documented such that it can be worked with
 - Different plattforms and Graphical Usuer Interfaces (GUI)
- For peers the effort to reproduce simulation results in published (or submitted) papers is often prohibitively high.
- Making available easy-to-use user interfaces for existing (large) ABMs in economics therefore is important to foster the diffusion of this modeling approach as well as reproducibility and replicability.

6. Fostering Transparency, Reproducibility & Replication

ETACE Virtual Appliance

- The ETACE Virtual Appliance is a stand-alone Linux-based simulation platform that provides a full suite of programs for agent-based modeling and simulation (currently including only different versions of the Eurace@Unibi model).
- The virtual appliance serves multiple purposes:
 - to ensure the reproducibility of results,
 - as a form of model documentation and communication,
 - it reduces costs of using the model and increases the credibility of the model.
- Platform independent; only requirement is a virtual machine client (e.g. Oracle VM VirtualBox)

6. Fostering Transparency, Reproducibility & Replication

ETACE Virtual Appliance

- The ETACE Virtual Appliance includes the implementations of the models underlying different (published) research papers as well as pre-configured scripts launching experiments carried out in the papers.
- Allows to exactly reproduce experiments reported in the paper.
- Allows designing and running alternative experiments testing the robustness of the reported results.

-> ETACE VA Demo

Thank you for your attention!

Information about Eurace@Unibi and an extensive model documentation at:

http://www.wiwi.uni-bielefeld.de/lehrbereiche/vwl/etace/Eurace_Unibi/

ETACE Virtual Appliance to run the Eurace@Unibi model at:

http://www.wiwi.uni-bielefeld.de/lehrbereiche/vwl/etace/Eurace_Unibi/Virtual_Appliance

ACE Introductory Material

Leigh Tesfatsions ACE webpage:

http://www2.econ.iastate.edu/tesfatsi/ace.htm

- List of References for these slides is provided in a separate file.
- Collection of Surveys on ACE topics:
 - L. Tesfatsion and K. Judd (Eds.): Handbook of Computational Economics, Volume II, North-Holland, 2006.
 - S.-H. Chen and M. Kaboudan (Eds): Handbook on Computational Economics and Finance.; Oxford University Press, 2018 (forthcoming).
 - C. Hommes and B. LeBaron (Eds.): Handbook of Computational Economics, Volume IV, North-Holland, 2018 (forthcoming).

- van der Hoog S, Dawid H (2017), 'Bubbles, Crashes and the Financial Cycle: Insights from a Stock-Flow Consistent Agent-Based Macroeconomic Model', Macroeconomic Dynamics (fortchcoming).
- Dawid, H., Harting, P., Neugart, M. (2017), 'Fiscal Transfers and Regional Economic Growth', Review of International Economics (forthcoming).
- van der Hoog, S. (2017). 'The Limits to Credit Growth: Mitigation Policies and Macroprudential Regulations to Foster Macrofinancial Stability and Sustainable Debt', Computational Economics (forthcoming).
- Dawid, H., Gemkow, S., Harting, P., van der Hoog, S., Neugart, M. (2018), ,Agent-Based Macroeconomic Modeling and Policy Analysis: The Eurace@Unibi Model', forthcoming in: Handbook on Computational Economics and Finance. Chen S-H, Kaboudan M (Eds); Oxford University Press.
- Dawid H, Harting P, van der Hoog S, Neugart M (2016), A Heterogeneous Agent Macroeconomic Model for Policy Evaluation: Improving Transparency and Reproducibility, Bielefeld Working Papers in Economics and Management, No. 06-2016.

- Dawid H (2015), 'Modeling the Economy as a Complex System', in Alves Furtado B, Sakowski PAM, Tovolli MH (Eds): Modeling Complex Systems for Public Policies, Brasilia: IPEA, 191–216.
- Ausloos M, Dawid H, Merlone U (2015), 'Spatial Interactions in Agent-Based Modeling', in Commendatore P, Kayam S, Kubin I (Eds): Complexity and Geographical Economics: Topics and Tools, Heidelberg: Springer, 353–377.
- Harting P. (2015), 'Stabilization Policies and Long Term Growth: Policy Implications from an Agent-based Macroeconomic Model', Bielefeld Working Papers in Economics and Management 06-2015.
- Dawid, H., Harting, P., Neugart, M. (2014), ,Economic convergence: policy implications from a heterogeneous agent model', Journal of Economic Dynamics and Control 44: 54–80.
- Dawid, H., Gemkow, S. (2014), ,How do social networks contribute to wage inequality? Insights from an agent-based analysis', Industrial and Corporate Change, 23(5): 1171–1200.

- Dawid, H., Harting, P., Neugart, M., (2013). 'Cohesion policy and inequality dynamics: Insights from a heterogeneous agents macroeconomic model', Bielefeld Working Papers in Economics and Managment No. 26-2013.
- Dawid, H., Gemkow, S., Harting, P., Neugart, M. (2012), 'Labor market integration policies and the convergence of regions: the role of skills and technology diffusion', Journal of Evolutionary Economics 22(3): 543–562.
- Dawid, H., Gemkow, S., Harting, P., van der Hoog, S., Neugart, M. (2012), ,The Eurace@Unibi Model: An Agent-Based Macroeconomic Model for Economic Policy Analysis', Bielefeld Working Papers in Economics and Management No. 05-2012.
- Dawid, H., Harting, P. (2012), 'Capturing Firm Behavior in Agent-Based Models of Industry Evolution and Macroeconomic Dynamics', in: Applied Evolutionary Economics, Behavior and Organizations. Bünstorf. G. (Ed); Edward-Elgar: 103–130.

- Dawid, H., Neugart, M. (2010), 'Agent-based Models for Economic Policy Design', Eastern Economic Journal 37: 44–50.
- ▶ Dawid, H., Gemkow, S., Harting, P., Neugart, M. (2009), 'On the Effects of Skill Upgrading in the Presence of Spatial Labor Market Frictions: An Agent-Based Analysis of Spatial Policy Design', Journal of Artificial Societies and Social Simulation 12(4): 5.
- Deissenberg, C., van der Hoog, S., Dawid, H. (2008), 'EURACE: A massively parallel agent-based model of the European economy', Applied Mathematics and Computation 204(2): 541–552.