GPU computing tutorial

Garland Durham
Quantos Analytics, LLC

March 30, 2013

Abstract

This tutorial will provide an introduction to parallel programming using commod-
ity video card (GPU) hardware. GPU hardware can enable speedups on the order
of a factor of 100 relative to conventional serial computing for amenable applications,
and is readily available at modest cost. The main focus will be on using the CUDA
software development kit (SDK) with Nvidia hardware. The tutorial will include ex-
amples in C/C++, Matlab and Python. A large part of the tutorial will consist of
hands-on exercises illustrating basic ideas central to GPU computing and a selection
of advanced topics. The tutorial is intended for people with little or no experience in
GPU programming.

Participants should bring laptops. Those with laptops equipped with Nvidia graph-
ics cards may find it useful to install the Nvidia CUDA driver and SDK. See https:
//developer.nvidia.com/cuda-downloads for details. Matlab with the parallel com-
puting toolkit might also be useful. However, I intend to provide access to remote
servers with hardware and software already installed and configured. This will provide
a uniform environment for all participants to work on the exercises we will undertake
together.

Some experience with C programming would be helpful. A very rudimentary knowl-
edge is sufficient (e.g., a few hours working through an online tutorial such as http:
//www.cprogramming.com/tutorial/c-tutorial.html, excluding the last several sec-
tions covering linked lists, recursion, etc).

Linux, OS X and Windows operating systems are all usable.



Outline
1. Introduction

(a) Historical background; alternative hardware/software platforms (MPI; OpenCL).
(b) Nvidia CUDA; description of hardware and software environment.

(c) Possible applications.
2. Installation and configuration

Available GPU hardware.
Installing the driver and software development kit (SDK).

(a)

(b)

(c)

(d) Setting up a remote GPU compute server; Amazon Elastic Compute Cloud
(EC2).

(e) Working with the remote server (SSH, Sftp, Rsync).

(f) Version control (Git).

Compiling and running sample programs.

3. Simple examples

(a) Introduction to GPU computing: C/C-++; Thrust library; Accelereyes Arrayfire;
Matlab; Python.

(b) Compile and run a few simple examples in C; illustrate basic ideas of GPU
computing.

4. CUDA programming in C

) Working with GPU threads.
) Optimizing memory accesses.
) Compilation options; makefiles.
) Random number generation.
e) Linear algebra (CUBLAS).
) Reductions and prefix scans.
) Using the Thrust and Arrayfire libraries.
)

Building a custom library (a simple CUDA array class; functor classses; generic
operations using functors).

(i) The CUDA profiler and debugger.
(j) Thrust library

5. Accelereyes Arrayfire

(a) Overview



(b) Array class

()

(d) Matrix operations
)
)

(
(

c) Basic operations

e) Reductions and prefix scans

f

Exercises
6. Matlab

(
(

a) Working with the gpuArray class.

)

b) Optimizing memory accesses.

(c) Efficient use of Matlab built-in GPU functions.
)

(d) Using custom kernels with Matlab.

7. Python

Random number generation.

Using custom kernels with Python.
8. Advanced topics
(a) Choose from a selection of more advanced exercises. Possible projects include

Markov chain Monte Carlo, sequential posterior simulation, option pricing, simulation-
based forecast construction, particle filtering.



