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Preface

This book has a long history. It grew out of courses on Nonlinear Economic Dynamics
(NED), which I have been teaching in the past 20 years at the University of Amsterdam
(UvA) and various other places. The NED course has been part of the MSc Econo-
metrics program of the Amsterdam School of Economics, University of Amsterdam
since I started at UvA in 1992. I have also taught a condensed version of NED
bi-annually between 1996 and 2004 in the Network Algemene en Kwantitatieve
Economie (NAKE), a quantitative network of economics PhD courses in the Nether-
lands. Since 2004 the NED course has been part of the Graduate Program of the
Tinbergen Institute, the Graduate school in Economics, Econometrics and Finance in
Amsterdam and Rotterdam. More recently, much of the material in this book has been
taught at various summerschools and lecture series, in particular the Advanced School
on Nonlinear Dynamical Systems in Economics, Udine, Italy, June 2004, the Lecture
Series on Heterogeneous Agent Models, Pisa, Italy, June 2006, the Trento Summer-
school on Agent-based Finance, Trento, Italy, July 2007 and the International School
on Multidisciplinary approaches to Economic and Social Complex Systems, Siena,
Italy, June 2010.

I am grateful to many colleagues and friends for inspiration and help over more
than two decades. My main PhD thesis advisor at the University of Groningen, Helena
Nusse, raised my enthusiasm for chaos and complexity. In Groningen, Floris Takens
further deepened my knowledge of nonlinear dynamics and strange attractors, and Ad
Pikkemaat taught me the first lessons in mathematical economics. At the University of
Amsterdam, this role was taken over by Claus Weddepohl, who was one of the first
mathematical economists in the Netherlands and Europe recognizing the importance
of nonlinear dynamics and complexity for economics.

I am most grateful to William “Buz” Brock for his inspiration and support over so
many years. My visits to the University of Wisconsin, Madison, in the summers of 1994,
1995 and 1997 and our regular discussions thereafter over a coffee or a “spotted cow”
either in Amsterdam or Madison, have been extremely stimulating and productive.
Our joint work on bounded rationality and heterogeneous expectations in complex
economic systems forms the theoretical basis of this book. Buz’s contributions go far
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beyond science and his warm friendship has been another reason to keep coming back
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Since 1998 the Center for Nonlinear Dynamics in Economics and Finance (CeN-
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from my almost daily discussions and joint work in the past 15 years with CeNDEF
researchers, coauthors and friends, particularly with Mikhail Anufriev, Peter Boswijk,
Cees Diks, Maurice Koster, Roald Ramer, Joep Sonnemans, Jan Tuinstra and Florian
Wagener. I have been fortunate with continuous intellectual challenges from excellent
PhD students and postdocs at CeNDEF and would like to thank Tiziana Assenza, Te
Bao, Adriana Cornea, Pietro Dindo, Gerwin Griffioen, Peter Heemeijer, Sander van der
Hoog, Tatiana Kiseleva, David Kopanyi, Marco van der Leij, Michiel van der Leur,
Tomasz Makarewicz, Sebastiano Manzan, Domenico Massaro, Saeed Mohammadian
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van de Velden, Robin de Vilder, Juanxi Wang, Roy van der Weide, Marcin Wolski,
Paolo Zeppini, Mei Zhu and Ilija Zovko.

Complexity, bounded rationality and heterogeneity are new and still somewhat
controversial topics in economics and my work benefitted greatly from many stim-
ulating discussions, encouragement and joint work with many colleagues and friends:
Jasmina Arifovic, Volker Böhm, Giulio Bottazzi, Jean Philip Bouchaud, Bill Branch,
Jim Bullard, Serena Brianzoni, Carl Chiarella, Silvano Cincotti, David Colander,
Herbert Dawid, Dee Dechert, Paul DeGrauwe, Domenico Delli-Gatti, Roberto Dieci,
Giovanni Dosi, Edward Droste, John Duffy, George Evans, Doyne Farmer, Gustav
Feichtinger, Mauro Gallegati, Laura Gardini, Andrea Gaunersdorfer, Jacob Goeree,
David Goldbaum, Jean-Michel Grandmont, Roger Guesnerie, Tony He, Dirk Helbing,
Thorsten Hens, Seppo Honkapohja, Hai Huang, Ken Judd, Alan Kirman, Mordecai
Kurz, Yuri Kuznetsov, Laurence Laselle, Blake LeBaron, Axel Leijonhufvud, Marji
Lines, Thomas Lux, Rosario Mantegna, Bruce McGough, Alfredo Medio, Paul
Ormerod, Damjan Pfajfar, J. Barkley Rosser, Klaus-Reiner Schenk-Hoppé, Andras
Simonovits, Gerhard Sorger, Didier Sornette, Shyam Sunder, Leigh Tesfatsion, Fabio
Tramontana, Miroslav Verbic, Duo Wang, Frank Westerhoff, Remco Zwinkels and
many others.

I hope this book will provide the readers with some of the excitement about nonlinear
dynamics and complex systems in economics and finance that I have experienced
over the years. The book should not be seen as an in-depth mathematical treatment of
nonlinear dynamics, but rather as a collection of the most important and relevant tools
to be applied by researchers and policy makers in economics and finance. In the courses
I have been teaching about the subject, computer simulations have always played an
important role for students as an illustration of the concepts and richness of nonlinear
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1 Introduction

The economy is a complex system with nonlinear interactions and feedback loops.
Early traces of this view date back, for example, to Schumpeter and Hayek, and to
Simon. The complexity modeling paradigm has been strongly advocated since the 1980s
by economists and multidisciplinary scientists from various fields, such as physics,
computer science and biology, linked to the Santa Fe Institute.1 More recently the
complexity view has also drawn the attention of policy makers, who are faced with
complex phenomena, irregular fluctuations and sudden, unpredictable market transi-
tions. For example, the chairman of the FED, Ben Bernanke, noted that the 1000-point
collapse of the Dow Jones Industrial Average on the afternoon of May 6, 2010, reflected
the complexity of financial-market systems:

The brief market plunge was just a small indicator of how complex and chaotic, in the formal
sense, these systems have become. Our financial system is so complicated and so interactive –
so many different markets in different countries and so many sets of rules. What happened in the
stock market is just a little example of how things can cascade or how technology can interact
with market panic.

(interview Ben Bernanke, IHT, May 17, 2010).

The recent financial-economic crisis is a dramatic example of large movements, similar
to critical transitions that are so characteristic for complex evolving systems. These large
changes of global financial markets can hardly be viewed as a rational response to news
about economic fundamentals and cannot be explained by traditional representative
rational agent macro-finance models. A more compelling and intuitive explanation
is that these extreme large movements have been triggered by bad economic news,
and subsequently strongly amplified by an “irrational” overreaction of a heterogeneous
population of boundedly rational, interacting agents. In a well-known speech the former
president of the ECB, Jean-Claude Trichet, called for a new approach for policy makers
to managing crises:

First, we have to think about how to characterise the homo economicus at the heart of any model.
The atomistic, optimising agents underlying existing models do not capture behaviour during a

1 See, e.g., the early collections of papers in the Santa Fe conference proceedings Anderson et al. (1988) and
Arthur et al. (1997a).
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2 Behavioral Heterogeneity in Complex Economic Systems

crisis period. We need to deal better with heterogeneity across agents and the interaction among
those heterogeneous agents. We need to entertain alternative motivations for economic choices.
Behavioural economics draws on psychology to explain decisions made in crisis circumstances.
Agent-based modelling dispenses with the optimisation assumption and allows for more complex
interactions between agents. Such approaches are worthy of our attention.

Second, we may need to consider a richer characterisation of expectation formation. Rational
expectations theory has brought macroeconomic analysis a long way over the past four decades.
But there is a clear need to re-examine this assumption. Very encouraging work is under way on
new concepts, such as learning and rational inattention.

(Speech by Jean-Claude Trichet, ECB Central Banking Conference, Frankfurt,
November 18, 2010)

This book presents some simple, stylized complexity models in economics. Our main
focus will be an underlying behavioral theory of heterogeneous expectations of bound-
edly rational individual agents in a complex, adaptive economic environment. We will
also discuss empirical validation, both at the micro and at the macro level, of a behavioral
theory of heterogeneous expectations through financial time series data and laboratory
experiments with human subjects. The need for an empirically grounded behavioral the-
ory of expectations for economic dynamics has already been stressed by Herb Simon
(1984, p. 54):

Avery natural next step for economics is to maintain expectations in the strategic position they have
come to occupy, but to build an empirically validated theory of how attention is in fact directed
within a social system, and how expectations are, in fact, formed. Taking that next step requires
that empirical work in economics take a new direction, the direction of micro-level investigation
proposed by Behavioralism.

1.1 Economic dynamics, nonlinearity and complexity

Economic dynamics is concerned with modeling fluctuations in economic and financial
variables, such as commodity prices, output growth, unemployment, interest rates,
exchange rates and stock prices. Broadly speaking, there are two contrasting views
concerning the main sources of economic fluctuations. According to the first, business
cycles are mainly driven by “news” about economic fundamentals, that is, by random
exogenous shocks to preferences, endowments, technology, firms’ future earnings or
dividends, etc. These random shocks typically act on an inherently stable (linearized)
economic system. This view dates back to the 1930s, to Frisch, Slutsky and Tinbergen,
who showed that a stable linear system subject to an irregular sequence of external,
random shocks may produce fluctuations very similar to those observed in real business
cycles.

The linear, stable view was criticized in the 1940s and 1950s, mainly because it
did not offer an economic explanation of observed fluctuations, but rather attributed
those fluctuations to external, non-economic forces. As an alternative, Goodwin, Hicks
and Kaldor developed nonlinear, endogenous business cycle models, with the savings-
investment mechanism as the main economic force generating business fluctuations.
According to this nonlinear view, the economy may be intrinsically unstable and, even
in the absence of external shocks, fluctuations in economic variables can arise. These
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early Keynesian nonlinear business cycle models, however, were criticized for at least
three reasons. Firstly, the limit cycles generated by these models were much too regular
to explain the sometimes highly irregular movements in economic and financial time
series data. Secondly, the “laws of motion” were considered to be “ad hoc,” since they
had not been derived from micro foundations, i.e., from utility and profit maximization
principles. A third important critique was that agents’ behavior was considered as irra-
tional, since their expectations were systematically wrong along the regular business
cycles. Smart, rational traders would learn from experience to anticipate these cyclic
movements and revise their expectations accordingly, and, so the story goes, this would
cause the cycles to disappear.

These shortcomings triggered the rational expectations revolution in the 1960s and
1970s, inspired by the seminal papers of Muth (1961) and Lucas (1972a and b). New
classical economists developed an alternative within the exogenous approach, the
stochastic real business cycle (RBC) models, pioneered by Kydland and Prescott
(1982). RBC models fit into the general equilibrium framework, characterized by
utility-maximizing consumers, profit-maximizing firms, market clearing for all goods
at all dates and all traders having rational expectations. More recently, New Keynesian
Dynamic Stochastic General Equilibrium (DSGE) models have moved to the forefront
of macroeconomic modeling and policy analysis (Clarida et al., 1999; Woodford 2003).
Typically these DSGE models are log linearized and assume a representative rational
agent framework. A representative, perfectly rational agent nicely fits into a linear view
of a globally stable, and hence predictable, economy. By the late 1970s and early 1980s,
the debate concerning the main source of business cycles seemed to have been settled
in favor of the exogenous shock hypothesis, culminating in the currently dominating
DSGE macro models for policy analysis.

1.1.1 The discovery of chaos
In mathematics and physics the view on modeling dynamic phenomena changed dra-
matically in the 1960s and 1970s due to the discovery of deterministic chaos. One of
its pioneers, the MIT meteorologist Edward Lorenz (1963), discovered by computer
simulations that a simple nonlinear system of three differential equations can gener-
ate highly irregular and seemingly unpredictable time series patterns.2 Moreover, his
stylized model of weather prediction was characterized by sensitive dependence on
initial conditions (the “butterfly effect”): a small perturbation of the initial state leads
to a completely different time path prediction in the medium or long run. In the 1970s,
Ruelle and Takens (1971) presented a mathematical proof that a simple nonlinear sys-
tem of three or four differential equations, without any external random disturbances,
can indeed exhibit complicated, irregular long run dynamical behavior. They introduced

2 See, e.g., Gleick (1987) for a stimulating historical overview of “chaos theory.” It is interesting to note that
one of the traditional Keynesian business cycle models from the 1950s, Hicks’ classical nonlinear trade cycle
model with ceilings and floors, can in fact generate irregular, chaotic time series. In particular, figures 9 and 10
in Hicks (1950, pp. 76–79), computed by hand at the time, are similar to the computer simulated chaotic series
in Hommes (1995), so that in some sense Hicks was close to discovering chaos in his trade cycle model.



4 Behavioral Heterogeneity in Complex Economic Systems

the notion of a strange attractor to describe irregular long run behavior in a nonlin-
ear deterministic dynamical system. The discovery of deterministic chaos and strange
attractors shattered the Laplacian deterministic view of perfect predictability and made
scientists realize that, because initial states can only be measured with finite precision,
long run prediction may be fundamentally impossible, even when the laws of motion
are perfectly known.

In the 1970s, there was yet another important mathematical article with the illuminat-
ing title “Period three implies chaos” (Li and Yorke, 1975), which played a stimulating
role and was particularly important for applications. Li and Yorke showed that for a
large class of simple nonlinear difference equations in one single state variable, a sim-
ple sufficient “period three” condition already implies complicated, chaotic dynamical
behavior. The best-known example concerns logistic population growth in biology,
as described by May (1976). These and other simple mathematical examples together
with the rapidly increasing availability of computers for numerical simulations led to an
explosion of interest in nonlinear dynamics in mathematics, physics and other applied
sciences.

The “chaos revolution” in the 1970s had its roots, however, much earlier, at the end
of the nineteenth century in the famous French mathematician Henri Poincaré. In 1887
king Oskar II of Sweden promised a prize to the best essay concerning the question “Is
our solar system stable?” In his prize-winning essay, Poincaré (1890) showed that the
motion in a simple three-body system, a system of sun, earth and moon, need not be
periodic, but may become highly irregular and unpredictable. In modern terminology
he showed that chaotic motion is possible in a three-body system. Poincaré introduced
the notion of a so-called homoclinic point, an intersection point between the stable and
the unstable manifolds of an equilibrium steady state. His notion of homoclinic orbits
turned out to be a key feature of complicated motion and strange attractors and may be
seen as an early signature of chaos.

1.1.2 Economic applications of chaos
In the 1980s, inspired by “chaos theory” and within the tradition of endogenous busi-
ness cycle modeling, economic theorists started looking for nonlinear, deterministic
models generating erratic time series similar to the patterns observed in real busi-
ness cycles. This search led to new, simple nonlinear business cycle models, within
the Arrow–Debreu general equilibrium paradigm of optimizing behavior, perfectly
competitive markets and rational expectations, generating chaotic business fluctua-
tions (e.g., Benhabib and Day, 1982 and Grandmont, 1985; see, e.g., Lorenz, 1993 for
an overview of nonlinear business cycle models and chaos). These model examples
show that irregular, chaotic fluctuations can arise under the New Classical Economics
paradigm in a perfectly rational representative agent framework. It turned out to be
more difficult, however, to calibrate or estimate such chaotic business cycle models to
real economic data.

Simultaneously, the search for nonlinearity and chaos in economics was undertaken
from an empirical perspective. In physics and mathematics nonlinear methods to
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distinguish between truly random and deterministic chaotic time series had been devel-
oped. For example, correlation dimension tests and Lyapunov exponent tests had been
developed by Takens (1981) and Grassberger and Procaccia (1983). When the corre-
lation dimension of a time series is low, this suggests evidence for low-dimensional
chaos. In economics, for example, Brock and Sayers (1988) found a correlation dimen-
sion of about 3 for macroeconomic data (postwar quarterly US unemployment rates),
and Scheinkman and LeBaron (1989) a correlation dimension of about 6 for stock
market data (weekly stock returns). A problem for applying these empirical methods,
particularly relevant for economic data, is that they require very long time series and
that they are extremely sensitive to noise. Furthermore, it turned out that time series
generated by fitted stochastic alternative models, such as linear, near unit root autore-
gressive models for macro data or GARCH-models for stock returns, also generate low
correlation dimensions of comparable size. Hence, from these empirical findings, one
cannot conclude that there is evidence for low-dimensional, purely deterministic chaos
in economic and financial data. Brock, Dechert, Scheinkman and LeBaron (1996) have
developed a general test (the BDS test), based upon the notion of correlation dimension,
to test for nonlinearity in a given time series; see Brock et al., (1991) for the basic the-
ory, references and applications. The BDS test has become widely used, in economics
but also in physics, and has high power against many nonlinear alternatives. From an
empirical viewpoint, evidence for low-dimensional, purely deterministic chaos in eco-
nomic and financial data is weak, but there is strong evidence for nonlinear dependence.
At the same time, it seems fair to add that, because of the sensitivity to noise of these
methods, the hypothesis of chaos buffeted with (small) dynamic noise has not been
rejected either.3 Nor has higher-dimensional chaos been rejected by these time series
methods.

Empirical difficulties, both in calibrating new classical nonlinear endogenous busi-
ness cycle models to economic data and in finding evidence for low-dimensional
chaos in economic and financial time series, thus prevented a full embracement and
appreciation of nonlinear dynamics in economics in the 1980s and early 1990s.

1.1.3 Expectations
The most important difference between economics and the natural sciences is perhaps
the fact that decisions of economic agents today depend upon their expectations or
beliefs about the future. To illustrate this difference, weather forecasts for tomorrow
will not affect today’s weather, but investors’ predictions about future stock prices may
affect financial market movements today. A classic example is the Dutch “tulip mania”
in the seventeenth century, as described in Kindleberger (1996). The dreams and hopes
of Dutch investors for excessive high returns on their investments in tulip bulbs may
have exaggerated the explosion of the price of tulip bulbs by a factor of more than
20 at the beginning of 1636, and its crash back to its original level by the end of that
year. Another more recent example is the “dot-com bubble,” the rapid run up of stock

3 See Hommes and Manzan (2006) for a brief recent discussion.
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prices in financial markets worldwide in the late 1990s, and the subsequent crash. This
rise in stock prices was triggered by good news about economic fundamentals, a new
communication technology, the internet. An overoptimistic estimate of future growth
of ICT industries seems to have contributed to and strongly reinforced the excessively
rapid growth of stock prices in 1995–2000, leading to extreme overvaluation of stock
markets worldwide, and their subsequent fall in 2000–2003. A more recent example
is the 2008–2012 financial-economic crisis. It is hard to believe that the decline of
worldwide financial markets in 2008 of more than 50% was completely driven by
changes in economic fundamentals. Rather it seems that the large decline was strongly
amplified by pessimistic expectations and market psychology. A similar observation
applies to the 2011–2012 EU debt crisis. While the budget deficits of EU countries are
partly caused by economic fundamentals, the sharp rise in the spread of, e.g., Italian
and German bonds in 2011 seems to have been exaggerated by investors’ pessimistic
expectations. The predictions, expectations or beliefs of consumers, firms and investors
about the future state of the economy are part of the “law of motion.” The economy is a
highly nonlinear expectations feedback system, and therefore a theory of expectations
is a crucial part of any dynamic economic model or theory.

Since the introduction of rational expectations by Muth (1961) and its populariza-
tion in macroeconomics by Lucas (1972a and b) and others, the rational expectations
hypothesis (REH) became the dominating expectations formation paradigm in eco-
nomics. According to the REH all agents are rational and take as their subjective
expectation of future variables the objective prediction by economic theory. In economic
modeling practice, expectations are given as the mathematical conditional expectation
given all available information. Rational agents do not make “systematic mistakes”
and their expectations are, on average, correct. The REH provides an elegant “fixed-
point” solution to an economic expectations feedback system by imposing that, on
average, expectations and realizations coincide. In the absence of exogenous shocks,
rational expectations implies that agents have perfect foresight and make no mistakes
at all. This shortcut solution excludes all irrationality and market psychology from eco-
nomic analysis, and instead postulates that expectations are in equilibrium and perfectly
self-fulfilling.

The rational expectations revolution in economics took place before the discovery
of chaos, at least before the time that the irregular behavior and complexity of nonlin-
ear dynamics were widely known among economists. The fact that chaos can arise in
simple nonlinear systems and its implications for limited predictability, however, shed
important new light on the expectations hypothesis. In a simple (linear) stable economy
with a unique steady state, predictability prevails and it seems natural that agents may
have rational expectations, at least in the long run. A representative, perfectly rational
agent model nicely fits into a linear view of a globally stable and predictable econ-
omy. But how can agents have rational expectations or perfect foresight in a complex,
nonlinear world, when the true law of motion is unknown and prices and quantities
move irregularly on a strange attractor exhibiting sensitivity to initial conditions? A
boundedly rational world view with agents using simple forecasting strategies, which
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may not be perfect but are at least approximately right, seems more appropriate for
a complex nonlinear environment. Indeed, already around 1900 Poincaré, one of the
founding fathers of nonlinear dynamics, expressed his concerns about the implications
of limited predictability in nonlinear systems for economics in a letter to Walras, one
of the founders of mathematical economics:4

You regard men as infinitely selfish and infinitely farsighted. The first hypothesis may perhaps be
admitted in a first approximation, the second may call for some reservations.

1.1.4 Bounded rationality and adaptive learning
In economics in the 1950s, Herbert Simon emphasized that rationality requires extreme
assumptions concerning agents’ information gathering and computing abilities. Firstly,
rational agents are typically assumed to have perfect information about economic fun-
damentals and perfect knowledge about underlying market equilibrium equations. This
assumption seems unrealistically strong, especially since the “law of motion” of the
economy depends on the expectations of all other agents. Secondly, even if such infor-
mation and knowledge were available, typically in a nonlinear market equilibrium
model it would be very hard, or even impossible, to derive the rational expectations
forecast analytically, and it would require quite an effort to do it computationally. As
an alternative, Simon strongly argued for bounded rationality, with limited comput-
ing capabilities and agents using simple rules of thumb instead of perfectly optimal
decision rules, as a more accurate and more realistic description of human behavior.
Simon’s reasoning lost against the rational expectations revolution in the 1970s, but in
the last two decades similar reasoning has caused an explosion of interest in bounded
rationality. Modeling a world with boundedly rational agents, who adapt their behavior
and learn from past experiences over time, leads to a complex and highly nonlinear
dynamic system.

A common assumption underlying models of bounded rationality is that agents do
not know the actual “law of motion” of the economy, but instead base their forecasts
upon time series observations. They behave like economic statisticians, forming expec-
tations based upon time series observations, using a simple statistical model for their
perceived law of motion. Adaptive learning, sometimes also referred to as statistical
learning, means that agents adapt their beliefs over time by updating the parameters
of their perceived law of motion according to some learning scheme (e.g., recursive
ordinary least squares), as additional observations become available. The adaptive
learning approach has been used extensively in macroeconomics. Sargent (1993)
gives an early overview of learning in macroeconomics, while Evans and Honkapo-
hja (2001) contains a more recent extensive and detailed treatment; see also Conlisk
(1996) for a stimulating discussion of bounded rationality. An important issue that has
received much attention in the literature is the stability of rational expectations equi-
libria under adaptive learning. If adaptive learning enforces convergence to a rational

4 Front quotation in Grandmont (1998) and Ingrao and Israel (1990), from letter of October 1, 1901 of Henri
Poincaré to Léon Walras.
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expectations equilibrium, the REH would be more plausible as a (long run) description
of the economy, since the underlying informational assumptions could be consider-
ably relaxed. However, many examples have been found where adaptive learning does
not converge to rational expectations, but rather settles down to some kind of “learn-
ing equilibrium” displaying endogenous, sometimes even chaotic, fluctuations and
excess volatility (e.g., Bullard, 1994, Grandmont, 1998, Hommes and Sorger, 1998 and
Schönhofer, 1999).

1.1.5 Heterogeneity in complex adaptive systems
The representative agent model has played a dominant role in modern economics for
quite some time. Most rational expectations models assume a single, representative
agent, representing average consumer, average firm or average investment behavior.
An important motivation for the rational agent model dates back to the 1950s, to Milton
Friedman (1953) who argued that non-rational agents will be driven out of the market
by rational agents, who will trade against them and earn higher profits. In recent years
however, this view has been challenged and heterogeneous agent models are becoming
increasingly popular in finance and in macroeconomics. Kirman (1992, 2010), for
example, provides an illuminating critique on representative rational agent modeling.

Bounded rationality and learning in a complex environment naturally fit with het-
erogeneous expectations, with the economy viewed as a complex evolving system
composed of many different, boundedly rational, interacting agents, using different
decision strategies, heuristics and forecasting rules. Heterogeneous strategies compete
against each other and an evolutionary selection mechanism, e.g., through genetic algo-
rithm learning, disciplines the class of strategies being used by individual agents. In
such a complex system, expectations and realizations coevolve over time. The work
at the Santa Fe Institute has played a stimulating role and the collections of papers in
Anderson et al. (1988) and Arthur et al. (1997a) of Santa Fe conferences provide early
examples of the complexity modeling approach in economics.

The complexity view in economics is naturally linked to agent-based computational
economics (ACE), characterized by agent-based computer simulation models with many
heterogeneous agents; see, e.g., the recent Handbook of Tesfatsion and Judd (2006)
for surveys of the state of the art of ACE. An advantage of agent-based models is
that one can use a “bottom up” approach and build “realistic” models from micro
interactions to simulate and mimic macro phenomena. However, in agent-based models
with many interacting agents, the “wilderness of bounded rationality” is enormous, there
are infinitely many possibilities for individual decision rules and, for a given model, it
is often hard to pin down what exactly causes certain stylized facts at the macro level
in agent-based micro simulations.

1.1.6 Behavioral rationality and heterogeneous expectations
A good feature of the rational expectations hypothesis (REH) is that it imposes strong
discipline on agents’ forecasting rules and minimizes the number of free parameters
in dynamic economic models. In contrast, the “wilderness of bounded rationality” in
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agent-based models leaves many degrees of freedom in economic modeling, and it
seems far from clear which rules are the most reasonable out of an infinite class of
potential behavioral rules. Stated differently in a popular phrase: “There is only one
way (or perhaps a few ways) you can be right, but there are many ways you can be
wrong.” To avoid “ad hoccery,” a successful bounded rationality research program
needs to discipline the class of expectations and decision rules. The REH assumes per-
fect consistency between beliefs and realizations. For a successful bounded rationality
research program a reasonable and plausible form of consistency between beliefs and
realizations is necessary.

This book focusses on “simple” complexity models, where only a few different
types of heterogeneous agents interact. Our main focus is on the role of behavioral
rationality and heterogeneous expectations within stylized complexity models. Our
consistency story of bounded rationality contains three important elements: (i) agents
use simple decision rules, with an intuitive behavioral interpretation; (ii) agents switch
between different decision rules based on evolutionary selection and learning; and (iii)
the models of bounded rationality are empirically validated, at both the micro and the
macro levels.

Behavioral rationality emphasizes the use of simple, intuitive decision rules – heuris-
tics – with a plausible behavioral interpretation. These heuristics are not perfect and
need not be optimal, but within an environment that is too complex to fully understand
individual agents look for simple decision rules that perform reasonably well to a first-
order approximation; for a similar approach and extensive discussions, see, e.g., the
collection of papers on smart heuristics and the adaptive toolbox in Gigerenzer et al.
(1999) and Gigerenzer and Selten (2001).

Two forms of learning further discipline the class of decision heuristics. First, we
use the heterogeneous strategy switching framework of Brock and Hommes (1997a,
1998) of endogenous evolutionary selection or reinforcement learning among het-
erogeneous decision or forecasting rules. The main idea here is that agents tend to
switch to rules that have performed better, according to some suitable economic per-
formance measure such as realized profits or forecasting accuracy, in the recent past.
The forecasting rules may be divided into different classes, with different degrees of
rationality, ranging from simple behavioral rules such as naive or adaptive expecta-
tions, trend extrapolating rules or contrarian rules, to more sophisticated rules, such
as statistical learning rules, fundamental market analysis or even rational expectations.
These more sophisticated rules may be more costly – due to information-gathering
costs – than alternative forecasting heuristics. The second form of learning takes
place within each class of forecasting heuristics, with some parameters changing
over time following some adaptive learning process. For example, within the class of
trend-following heuristics, the trend coefficient or the anchor from which the trend
is extrapolated may change over time and depend upon market realizations. This
type of learning also has a behavioral interpretation and can be linked to the anchor
and adjustment heuristics used in psychology (e.g., Tversky and Kahneman, 1974,
Kahneman, 2003).
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To discipline behavioral models and boundedly rational decision heuristics, empirical
validation both at the micro and at the macro level is important. Laboratory experi-
ments with human subjects, in particular experimental macroeconomics, plays a key
role here, with the experimenter having full control over the type of micro interac-
tions and the macroeconomic fundamentals. Duffy (2006, 2008a and b) provides a
stimulating overview of experimental macroeconomics; the learning-to-forecast exper-
iments surveyed in Hommes (2011) can be used to study the interactions of individual
heterogeneous expectations and their aggregate effect in the laboratory.

Behavioral rationality and heterogeneous expectations naturally lead to highly non-
linear dynamical systems, because the fractions attached to the different rules are
changing over time. Evolutionary selection of heterogeneous expectations sometimes
enforces convergence to a rational expectations equilibrium. More often, however, the
evolutionary system may be unstable and exhibit complicated, perpetual fluctuations,
with several simple forecasting heuristics surviving evolutionary selection. In particu-
lar, we will see that when some rules act as “far from the steady state stabilizing forces”
and other rules act as “close to the steady state destabilizing forces,” evolutionary selec-
tion of expectations rules may lead to Poincaré’s classical notion of a homoclinic orbit
and may be seen as a signature of potential instability and chaos in a complex adaptive
system with behaviorally rational agents.

An economy with heterogeneous, behaviorally rational agents is a highly nonlin-
ear complex evolving system. The tools of nonlinear dynamics and complex systems
are crucial to understand the behavior of markets with heterogeneous boundedly
rational agents and to provide the insights to managing complex adaptive systems.
This book introduces the most important analytical and computational tools in sim-
ple nonlinear complexity models and applies them to study economic dynamics with
heterogeneous boundedly rational agents and learning. The remainder of this intro-
duction gives the reader a quick overview of the contents of the book, discussing
important concepts such as behavioral rationality and heterogeneous expectations in
some simple examples of complex economic systems and briefly discussing their
empirical validation with time series data and laboratory experiments with human
subjects.

1.2 Adaptive expectations in a nonlinear economy

The simplest economic example nicely illustrating the role of expectations feedback
is the “hog cycle” or cobweb model. Traditionally it has played a prominent role as a
didactic benchmark model and has been used, for example, in the seminal article of
Muth (1961) introducing rational expectations. Here we focus on the role of simple
expectation rules, in particular adaptive expectations, in a nonlinear cobweb model.

The model is partial equilibrium and describes an independent competitive market
for a non-storable consumption good, such as corn or hogs. Production takes a fixed
unit of time, and suppliers therefore have to base their production decision upon their
anticipation or expectation pe

t of the market equilibrium price pt that will prevail.
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Demand, supply and market clearing are described by

D(pt) = a − dpt + εt , a,d > 0, (1.1)

Sλ(p
e
t ) = c + arctan(λ(pe

t − p̄)), c,λ > 0, (1.2)

D(pt) = Sλ(p
e
t ). (1.3)

Demand D in (1.1) is a linearly decreasing function in the market price pt , with slope
−d, and εt is a random term representing (small) exogenous demand shocks. The
supply curve Sλ in (1.2) is nonlinear, increasing and S-shaped, with the parameter λ

tuning the nonlinearity of the supply curve and p̄ denoting the inflection point of the
nonlinear supply curve, where marginal supply assumes its maximum. It should be
noted that such a nonlinear, increasing supply curve can be derived from producer’s
profit maximization with a convex cost function. Finally, (1.3) dictates that the price
adjusts such that the market clears in each period.

To close the model we have to specify how producers form price expectations. The
simplest case, studied in the 1930s, e.g., by Ezekiel (1938), assumes that producers have
naive expectations, that is, their prediction equals the last observed price, pe

t = pt−1.
Under naive expectations, when demand is decreasing and supply is increasing and
bounded, there are only two possibilities concerning the price dynamics, depending on
the ratio of marginal supply over marginal demand at the steady state price p∗ (i.e., the
price where demand and supply intersect):

• if |S′(p∗)/D′(p∗)| < 1, then the steady state is (locally) stable and prices converge
to p∗;

• if |S′(p∗)/D′(p∗)| > 1, then the steady state is unstable and prices diverge from p∗
and converge to a (stable) 2-cycle.

The unstable case is illustrated in Figure 1.1 (top panel). Due to the nonlinearity of the
supply curve, in the unstable case prices converge to a stable 2-cycle, with up and down
“hog cycle” price fluctuations.

In the 1960s, simple mechanical expectation rules such as naive expectations
became heavily criticized as being “irrational,” since these forecasts are “systemat-
ically wrong”. Rational farmers would discover the regular, cyclic pattern in prices,
learn from their systematic mistakes, change expectations accordingly and the hog
cycle would disappear, so the argument goes. Similar considerations lead Muth (1961)
to the introduction of rational expectations, where the expected price coincides with
the price predicted by economic theory. In a rational expectations equilibrium, agents
use economic theory, and compute their expectations as the conditional mathemati-
cal expectation derived from the market equilibrium equations. In the cobweb model,
taking conditional mathematical expectations on the left- and right-hand sides of the
market equilibrium equation (1.3), one derives that the rational expectations forecast
is exactly given by the steady state price p∗. In a rational expectations equilibrium,
expectations are self-fulfilling and agents make no systematic forecasting errors. In
a cobweb world without uncertainty (i.e., εt ≡ 0), the forecast pe

t = p∗ will always
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Figure 1.1. Time series of prices (left panel) and forecasting errors (right panel) in the nonlinear
cobweb model with adaptive expectations for different values of expectations weight factor w: stable
2-cycle for w = 1 (top panel), chaotic price series for w = 0.5 (middle panel), and stable steady state
for w = 0.3. Other parameter values are λ = 4.8, c = 1.5, a = 4.1, d = 0.25, p̄ = 6 and initial state
p0 = 6.

be exactly right and rational expectations coincides with perfect foresight. In a noisy
cobweb world with uncertainty, the rational expectations forecast pe

t = p∗ will be cor-
rect on average and agents make no systematic mistakes, since forecasting errors are
proportional to the exogenous random demand shocks εt .

Now consider the case of adaptive expectations, discussed by Nerlove (1958) (but
only in the case of linear demand and supply). Adaptive expectations are given by

pe
t = (1 −w)pe

t−1 +wpt−1, 0 ≤ w ≤ 1, (1.4)
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where w is the expectations weight factor. The expected price is a weighted average of
yesterday’s expected and realized prices, or equivalently, the expected price is adapted
by a factor w in the direction of the most recent realization. The weight factor w
determines the magnitude of the “error-correction” in each period. In fact, adaptive
expectations means that today’s expected price is a weighted average, with geometri-
cally declining weights, of all past prices. In the cobweb model with linear demand
and supply curves, naive and adaptive expectations lead to the familiar “hog” cycle,”
characterized by up and down oscillations between a high and a low price level. In the
case of nonlinear (but monotonic) demand and/or supply curves, things become more
complicated, however. A simple computation, using (1.1–1.3) and (1.4), shows that the
dynamics of expected prices becomes

pe
t = fw,a,d,λ(p

e
t−1) = (1 −w)pe

t−1 +w
a + εt − c − arctan(λ(pe

t−1 − p̄))

d
. (1.5)

Dynamics of (expected) prices in the cobweb model with adaptive expectations is
thus given by a one-dimensional (1-D) system xt = fw,a,b,λ(xt−1) with four model
parameters. What can be said about the price–quantity dynamics in this nonlinear
dynamic model, and how does it depend on the model parameters?

Figure 1.1 illustrates time series of prices and corresponding forecasting errors, for
different values of the expectations weight factor w. Under naive expectations (w = 1;
top panel) prices converge to a stable 2-cycle and expectational errors are large and
systematic. When agents are cautious in adapting their expectations, i.e., when the
expectations weight factor is small (w = 0.3, bottom panel), prices converge to the RE
stable steady state and forecasting errors vanish in the long run. For intermediate values
of the expectations weight factor (w = 0.5; middle panel) prices as well as forecasting
errors are chaotic. These forecasting errors are considerably smaller than under naive
expectations and, because they are chaotic, they are much more irregular and it is more
difficult for producers to learn from their errors. The degree of consistency between
realizations and adaptive expectations in the chaotic case is much higher than in the
2-cycle case of naive expectations, and it may therefore be a more reasonable, boundedly
rational description of market behavior.

A powerful tool to investigate how the dynamical behavior of a nonlinear model
depends on a single parameter is a bifurcation diagram. A bifurcation is a qualitative
change in the dynamics as a model parameter changes. Critical transitions in complex
systems arise because of some bifurcation, some qualitative change in the dynamics
of the system. A bifurcation diagram shows the long run dynamical behavior as a
function of a model parameter. Figure 1.2 shows a bifurcation diagram of the cobweb
model with adaptive expectations with respect to the expectations weight factor w,
illustrating the long run dynamics (100 iterations) after omitting a transient phase of
100 iterations.5 For small values of w, 0 ≤ w ≤ 0.31, prices converge to a stable steady

5 Most figures in this book have been made using the E&F Chaos software for simulation of nonlinear systems,
as described in Diks et al. (2008). The software is flexible and the user can, for example, easily include her own
favorite nonlinear dynamic system. The software is freely downloadable at www.fee.uva.nl/cendef.
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Figure 1.2. Bifurcation diagram for the expectations weight factor w, 0.2 ≤ w ≤ 1, showing long run
behavior of prices (top left panel) and forecasting errors (top right panel). The bottom panel shows
a bifurcation diagram in the presence of small noise. Other parameter values are λ = 4.8, c = 1.5,
a = 4.1, d = 0.25, p̄ = 6 and initial state p0 = 6.

state, while for high values of w, 0.82 < w ≤ 1 (close to naive expectations) prices
converge to a stable 2-cycle with large amplitude. Along the 2-cycle agents make sys-
tematic forecasting errors. For intermediate w-values however, say for 0.45 <w < 0.77,
chaotic price oscillations of moderate amplitude arise. In particular, the chaotic price
fluctuations for w = 0.5 have been illustrated already in Figure 1.1. Figure 1.2 (bottom
panel) also shows a simulation in the presence of small noise. The fine structure of
the bifurcation diagram disappears, but the initial period-doubling bifurcations remain
visible.

This example illustrates that a simple adaptive expectations rule in a noisy, nonlinear
environment may be a reasonable forecasting strategy, which may be correct on average
and which may not be easy to improve upon in a boundedly rational world.

1.3 Rational versus naive expectations

Heterogeneity of expectations among traders introduces an important nonlinearity into
the market dynamics and is a potential source of market instability and erratic, chaotic
price fluctuations. To illustrate this point by an example, we briefly discuss the cobweb
model with heterogeneous expectations, rational versus naive producers, as introduced
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in Brock and Hommes (1997a); see Chapter 5 for a more detailed treatment. Agents
can either buy a rational expectations forecast at positive information-gathering costs
or freely obtain a simple, naive forecasting rule. This relates to Herbert Simon’s idea
to take deliberation and information-gathering costs into account in behavioral mod-
eling. Information costs for rational expectations represent the idea that sophisticated
prediction of prices, for example based upon detailed market analysis of economic
fundamentals, is more costly than a simple prediction scheme, such as naive expecta-
tions or extrapolation of a price trend. The fractions of the two types change over time
depending on how well both strategies performed in the recent past. Agents are bound-
edly rational in the sense that they tend to switch to the strategy that has performed
better in the recent past.

To be more concrete, suppose that in the cobweb economy there are two types of
producers, with different price expectations.At the moment of their production decision,
producers can either buy the rational expectations price forecast at positive information
costs C, or freely obtain the naive forecast. The two forecasting rules are

pe
1,t = pt , (1.6)

pe
2,t =pt−1. (1.7)

Rational agents have perfect foresight, while naive agents use the last observation as
their forecast. In a cobweb world with rational versus naive expectations, the market
equilibrium price is determined by demand and aggregate supply of both groups, i.e.,

D(pt) = n1,t S(pt )+n2,t S(pt−1), (1.8)

where n1,t and n2,t represent the fractions of producers holding rational respectively
naive expectations. Notice that rational agents have perfect knowledge about the market
equilibrium equation (1.8). Hence, rational traders not only have exact knowledge
about prices and their own beliefs, but in a heterogeneous world they must also have
perfect knowledge about expectations or beliefs of all other traders. We take a linear
demand curve as before and, to keep the model as simple as possible, also a linear
supply curve S(pe) = spe. Market clearing in this two-type cobweb economy then
yields

a − dpt = n1,t spt +n2,t spt−1. (1.9)

The second part of the model describes how the fractions of rational and naive producers
are updated over time. The basic idea is that fractions are updated according to evo-
lutionary fitness. Producers are boundedly rational in the sense that most of them will
choose the forecasting rule which has highest fitness as measured by an economic per-
formance measure, such as realized profits. To simplify the discussion, we focus here on
the case where predictor selection is based upon last period’s squared forecasting error
plus the costs for obtaining that forecasting rule.6 After the market equilibrium price

6 As we will see in Chapter 5, Section 5.2 for linear demand and supply curves the fitness measure minus squared
prediction error is, up to a constant factor, identical to realized profits.
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has been revealed by (1.9), the new updated fractions of rational and naive producers
will be given by a discrete choice or logit model:

n1,t+1 = e−βC

e−βC + e−β(pt−pt−1)
2 , (1.10)

n2,t+1 = e−β(pt−pt−1)
2

e−βC + e−β(pt−pt−1)
2 . (1.11)

Note that these fractions add up to one. The key feature of the evolutionary selec-
tion or reinforcement learning scheme (1.10–1.11) is that the rule that performs better
will attract more followers. More precisely, as long as the squared forecasting error
(pt −pt−1)

2 from naive expectations is smaller than the per period costs C for rational
expectations, the majority of producers will “free ride” and not bother to buy the rational
expectations forecast. But as soon as squared prediction errors for naive expectations
become larger than the per period information-gathering costs for rational expectations,
most producers will switch prediction strategy and buy the rational expectations fore-
cast. The parameter β is called the intensity of choice, and it measures how fast the
mass of traders will switch to the optimal prediction strategy. In the special case β = 0,
both fractions will be constant and equal, and producers never switch strategy. In the
other extreme case, β = +∞, in each period all producers will use the same, optimal
strategy. We call this latter case the neoclassical limit, since it represents the highest
degree of rationality with respect to strategy selection based upon past performance in
a heterogeneous world.

Now suppose that the market is unstable under naive expectations, that is, as long
as all producers are naive, prices will diverge from the steady state price p∗. This
situation is quite common and arises when the sensitivity of production decisions to
expected price changes is larger than the sensitivity of consumers to price changes. The
evolutionary dynamics exhibits a rational route to randomness, that is, a bifurcation
route to strange attractors occurs, when the intensity of choice to switch to optimal
forecasting strategies becomes larger. Figure 1.3 illustrates chaotic time series of prices
and fractions as well as a strange attractor in the phase space.

The economic intuition behind the complicated evolutionary dynamics is simple.
Suppose that we start from a situation where prices are close to the steady state p∗ and
almost all producers are naive. With prices close to the steady state, forecasting errors of
naive expectations will be small, and therefore most producers will remain naive. Prices
start fluctuating and will diverge from the steady state, so that the forecasting errors
from naive expectations will increase over time. At some point, these forecasting errors
will become larger than the costs for rational expectations. If the intensity of choice
to switch strategies is high, then most producers will switch to rational expectations,
causing prices to return close to the steady state. But with prices close to the steady
state, it makes no sense to buy a rational expectations forecast, and most producers
will become naive again. Hence, boundedly rational switching between forecasting
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s = 1.35 and C = 1.
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strategies leads to an irregular switching between “cheap, destabilizing free riding”
and “costly, sophisticated stabilizing prediction.”

Heterogeneous expectations in a simple linear cobweb economy lead to a natural
nonlinearity, because the time-varying fractions of the different trader types appear
as multiplicative factors in the market equilibrium equation (1.8). The economic evo-
lutionary interaction between a “close to the steady state destabilizing force” when
most agents adopt the cheap, simple strategy, and a “far from the steady state stabi-
lizing force” when most agents switch to the costly, sophisticated strategy, is in fact
closely related to Poincaré’s notion of a homoclinic orbit, which may be seen as a
signature of potential instability and chaos in an evolutionary system with boundedly
rational agents. Indeed, in Chapter 5, Section 5.2 we will see that for a high intensity
of choice, the nonlinear evolutionary adaptive system is close to having a homoclinic
orbit, Poincaré’s classical notion nowadays known to be a key feature of chaotic sys-
tems. The nonlinear adaptive evolutionary system describing strategy selection of a
population of boundedly rational agents thus incorporates a simple economic mech-
anism leading to instability and chaos. In particular, a rational choice between cheap
free riding and costly sophisticated prediction may lead to highly erratic equilibrium
price fluctuations.

1.4 Adaptive learning

For commonly used simple expectations rules, such as naive or adaptive expectations,
the parameters of the rule are fixed. Adaptive learning, sometimes also called statistical
learning, refers to the more flexible situation with time-varying parameters, where
agents try to learn the parameters of their forecasting rule as new observations become
available over time.As a simple example, suppose agents use a linearAR(1) forecasting
rule, of the form

pe
t = α +ρ(pt−1 −α), (1.12)

with two parameters α and ρ. This linear rule has a simple behavioral interpretation. The
parameter α represents agents’ belief about the long run average of prices, while ρ rep-
resents the belief about the first-order autocorrelation coefficient, that is, the persistence
(or anti-persistence) of the price series. When ρ is positive, agents believe that if the last
observed price is above average, the next price will also be above average. On the other
hand, when ρ is negative, agents are contrarians, that is, they believe that if the last
observed price is above (below) average, the next price will be below (above) average.
But what are the “true” or “optimal” parameters α and ρ of the linear rule in a complex
market? In general, agents do not know the “true” parameters of their perceived law
of motion, but they may try to learn the optimal parameters as additional observations
become available. A more flexible forecasting rule with time-varying parameters is

pe
t = αt−1 +ρt−1(pt−1 −αt−1). (1.13)
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A simple example of an adaptive learning rule is given by

αt = 1

t + 1

t∑
i=0

pi , t ≥ 1 (1.14)

ρt =
∑t−1

i=0(pi −αt )(pi+1 −αt )∑t
i=0(pi −αt )2

, t ≥ 1, (1.15)

where αt is the sample average and ρt is the first-order sample autocorrelation coef-
ficient. We refer to this adaptive learning schema as sample autocorrelation learning
(SAC learning)7; see Chapter 4, Subsection 4.7.2 for a more detailed discussion. Here,
we emphasize the behavioral interpretation of SAC learning. Agents try to learn the
long run average αt and the first-order autocorrelation or the “degree of persistence” of
their linear forecasting rule. Hence, in a complex, nonlinear environment, agents try to
match the first two moments, the long run average and the first-order autocovariance,
to observed time series data.

The price dynamics in the cobweb model with linear demand and supply and SAC
learning is given by

pt = a − spe
t

d
, (1.16)

with the expected price pe
t given by SAC learning (1.13), (1.14) and (1.15). The model

with learning is a nonlinear system. When demand and supply are monotonic, however,
that is, demand is decreasing and supply is increasing, the system has nice properties
and always converges to the RE steady state, as illustrated in Figure 1.4.

But are all individual agents sophisticated enough to use such a statistical adaptive
learning rule? Stated differently, in an unknown complex environment will individual
agents coordinate on a simple adaptive learning procedure to enforce convergence of
aggregate price behavior to the rational expectations benchmark?

1.4.1 Cobweb learning-to-forecast experiments
Hommes et al. (2007) ran learning-to-forecast laboratory experiments with human sub-
jects to address this question; see Chapter 8 for a much more detailed discussion of
learning-to-forecast experiments. Participants in the experiments were asked to pre-
dict next periods’ market price of an unspecified good. The realized price pt in the
experiment was determined by the (unknown) cobweb market equilibrium equation

D(pt) = 1

K

K∑
i=1

S(pe
i,t ), (1.17)

7 SAC learning has been introduced in Hommes and Sorger (1998) and is closely related to recursive ordinary
least squares (OLS)learning, which is used extensively in the literature on adaptive learning, see Evans and
Honkapohja (2001).
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Figure 1.4. Price series under sample autocorrelation (SAC) learning converging to the unique
rational expectations equilibrium. Parameters are a = 2, d = 0.5, s = 2 and p0 = 1.

where D(pt) is the demand for the good at price pt , K is the size of the group, pe
i,t is

the price forecast by participant i and S(pe
i,t ) is the supply of producer i, derived from

profit maximization given the forecast by participant i. Demand and supply curves
D and S were fixed during the experiments (except for small random shocks to the
demand curve) and unknown to the participants. We focus on the group experiments
with K = 6, as in Hommes et al. (2007).

The main question in these experiments was whether agents can learn and coordi-
nate on the unique REE, in a world where consumers and producers act as if they were
maximizing utility and profits, but where they do not know underlying market equilib-
rium equations and only observe time series of realized market prices and their own
forecasts. Our choice for a nonlinear, S-shaped supply curve enables us to investigate
whether agents can avoid systematic forecasting errors, as would, for example, occur
along a 2-cycle under naive expectations, or can even learn a REE steady state in a
nonlinear cobweb environment.

In their experiment, Hommes et al. (2007) considered a stable and an unstable treat-
ment, which only differ in the parameter λ tuning the nonlinearity of the supply curve
as in (1.2). In the stable treatment, if all subjects use naive expectations, prices con-
verge to the RE steady state. In contrast, in the unstable treatment, if all subjects use
naive expectations, prices diverge from the RE steady state and converge to the stable
2-cycle, with large and systematic forecasting errors.

Figure 1.5 shows time series of the realized prices in two typical group experi-
ments, one stable and one unstable treatment, that only differ in the magnitude of
the parameter λ tuning the nonlinearity of the supply curve. For both treatments, the
sample mean of realized prices is very close to the (unknown) RE price. Moreover,
in the stable treatment, the sample variance is close to the variance (0.25) of the RE
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Figure 1.5. Realized market prices in two different cobweb group experiments. In the stable treatment
(upper panel) the price quickly converges to the RE price with small random fluctuations, whereas
in the unstable treatment (lower panel)) prices do not converge and exhibit excess volatility, with
strongly fluctuating prices around the RE price.

benchmark. In contrast, in the unstable treatment the sample variance is significantly
higher than the variance (0.25) of the RE benchmark, so that the unstable treatment
exhibits excess volatility. Hommes et al. (2007) also look at autocorrelations in real-
ized market prices, and find that there is no statistically significant autocorrelations in
realized market prices, for both the stable and the unstable treatments. Apparently, the
heterogeneous interactions of individual forecasting rules have washed out all linear
predictable structure in realized aggregate market prices.

Hence, in a stable cobweb environment with unknown demand and supply curves,
rational expectations may be a reasonable description of long run aggregate price
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behavior. In an unstable cobweb environment, however, full coordination on ratio-
nal expectations does not arise and the market exhibits excess volatility. Homogeneous
expectation models are – to our best knowledge – unable to explain all laboratory exper-
iments simultaneously, and therefore heterogeneity is a key feature in explaining
experiments across different treatments.

1.5 Behavioral rationality and heterogeneous expectations

A theory of bounded rationality and learning must be based on some reasonable con-
sistency between expectations and realizations. Broadly speaking, we have discussed
two stories of learning. One story of adaptive learning, where all agents use the same
simple rule, the perceived law of motion, and try to learn the optimal parameters of
the forecasting heuristic. According to this view, a representative agent optimizes the
parameters of his forecasting rule within a given (simple) class of rules. The second
story assumes that there are different classes of rules and that evolutionary selection or
reinforcement learning determines which classes are more popular. According to this
view, agents are heterogeneous and tend to switch to heuristics that have been more
successful in the recent past. More sophisticated classes of rules may require higher
information-gathering costs. We now combine these two bounded rationality stories of
adaptive learning and evolutionary selection into a theory of behavioral rationality and
heterogeneous expectations.

As an example, assume that agents can choose between a simple rule, naive expecta-
tions, and a more sophisticated SAC learning rule. The SAC rule requires more effort,
therefore it is more costly and can only be obtained at per period information costs
C ≥ 0. Hence, agents can choose between two forecasting rules:

pe
1,t = αt−1 +ρt−1(pt−1 −αt−1), (1.18)

pe
2,t = pt−1. (1.19)

In a cobweb world with SAC learning versus naive expectations, the market equilibrium
price is determined by

pt = a −n1,t sp
e
1,t −n2,t spt−1

d
, (1.20)

where n1,t and n2,t represent the fractions of producers using SAC learning respectively
naive expectations.

Evolutionary selection or reinforcement learning determines how many agents will
adopt each strategy. The fractions of SAC learners and naive producers depend upon
an evolutionary performance measure given by (minus) squared prediction errors, and
the fractions of the two types are again represented by a logit model
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n1,t+1 = e
−β[(pt−pe

1,t )
2+C]

e
−β[(pt−pe

1,t )
2+C] + e−β(pt−pt−1)

2
, (1.21)

n2,t+1 = e−β(pt−pt−1)
2

e
−β[(pt−pe

1,t )
2+C] + e−β(pt−pt−1)

2
. (1.22)

This model is very similar to the model with costly rational versus free naive expecta-
tions in the previous section, with rational agents replaced by SAC learning. Recall that
rational expectations requires perfect information, including knowledge about market
equilibrium equations and beliefs of all other agents. SAC learning assumes no knowl-
edge about beliefs of other agents, but instead SAC learning tries to extract information
(including how prices may be affected by expectations of other agents) from observable
quantities using a simple, linear model with time-varying parameters in an unknown
nonlinear environment.

According to (1.21–1.22), as long as the squared forecasting error (pt −pt−1)
2 from

naive expectations is smaller than the squared forecasting error (pt −pe
1,t )

2 from SAC
learning plus the per period costs C, most producers will “free ride” and not bother
about statistical learning. When the squared prediction errors for naive expectations
become larger, however, most producers will switch prediction strategy and buy the
SAC learning forecast.

Figure 1.6 illustrates the dynamics in the cobweb model with SAC learning versus
naive expectations.The price dynamics becomes chaotic, with a complicated underlying
strange attractor. Prices fluctuate irregularly, but at the same time adaptive learning
enforces convergence of the learning parameters, the sample average αt and the sample
autocorrelation ρt . The sample average αt converges to the (unknown) steady state price
p∗, where demand and supply intersect, while the sample autocorrelation coefficient
converges to a constant of about −0.4. Agents thus learn to be contrarians, as ρt →
−0.4, consistent with the SAC in realized prices. The presence of the SAC learning
rule in the ecology of forecasting strategies ensures that much of the strongly negative
autocorrelation in realized market prices is “arbitraged away,” similar to the learning-
to-forecast laboratory experiments.

In the cobweb market with heterogeneous agents, adaptive learning picks up the
correct sample average and first-order sample autocorrelation. Interactions and evolu-
tionary switching between these strategies cause complicated dynamical behavior. The
bifurcation diagram in Figure 1.6 (bottom panel) illustrates a rational route to random-
ness, that is, complicated dynamics arises when agents become more sensitive to past
performance of the strategies. The irregular price fluctuations are caused by the inter-
action of a simple, destabilizing strategy and a more sophisticated, costly, stabilizing
strategy. This example illustrates that, agents are able to learn the optimal linear AR(1)
rule in an unknown, complex heterogeneous environment.

When we apply the same 2-type model with SAC learning versus naive expectations
to a stable cobweb model, evolutionary selection and adaptive learning enforce con-
vergence to the rational expectations price. Hence, this simple 2-type heterogeneous
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Figure 1.6. SAC learning versus naive expectations. Agents learn to be contrarians, as the first-order
autocorrelation coefficient ρt approaches −0.4. The bifurcation diagram shows a rational route to
randomness, as the intensity of choice β increases. Parameters are β = 3, a = 4, d = 0.5, s = 1,
C1 = 1, p0 = 2, α0 = 2, ρ0 = 0.
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expectations model is able to explain both the coordination onto rational expectations
in the stable treatment and the excess volatility with erratic price fluctuations in the
unstable treatment of the cobweb laboratory experiments.

1.6 Financial markets as complex adaptive systems

The cobweb commodity market model discussed in the previous two sections is the
simplest nonlinear framework in which the role of heterogeneous expectations has
been studied extensively. In the last two decades, several structural heterogeneous
agent models have been introduced in the finance literature; see LeBaron (2006) and
Hommes (2006) for extensive surveys. In most of these heterogeneous agent models
different groups of traders, having different beliefs or expectations about future asset
prices, coexist. Two broad classes of traders can be distinguished. The first are funda-
mentalists, believing that the price of an asset is determined by underlying economic
fundamentals, as measured, for example, by the expected future dividend stream. Fun-
damentalists predict that the asset price will move in the direction of its fundamental
value and buy (sell) the asset when the price is below (above) its fundamental value.
The second typical trader type are chartists or technical analysts, believing that asset
prices are not determined by fundamentals only, but that they can be predicted by sim-
ple technical trading rules based upon observed patterns in past prices, such as trends
or cycles.

An important critique from “rational expectations finance” upon behavioral finance
with boundedly rational agents is that “irrational” traders will not survive in the market,
because they will on average lose money and therefore they will be driven out of
the market by rational investors, who will trade against them and drive prices back
to fundamentals. According to this view it can be assumed, at least in the long run,
that all agents behave “as if” they are all rational (Friedman, 1953). This “Friedman
hypothesis” is essentially an evolutionary argument, suggesting that wealth- or profit-
based reinforcement learning will drive out irrational investors.

At the Santa Fe Institute (SFI), Arthur et al. (1997b) and LeBaron et al. (1999) have
built an early artificial stock market, where traders select their forecasting rules and
trading strategies from a large population of trading rules, based upon an evolutionary
“fitness measure,” such as past realized profits or squared prediction errors. Strate-
gies with higher fitness have a bigger chance of being adopted by individual traders.
Computer simulations with genetic algorithms of this artificial stock market are char-
acterized by two different regimes: close to the fundamental fluctuations, where the
efficient market hypothesis (EMH) holds, and periods of persistent deviations from
fundamentals and excess volatility, where the market is dominated by technical trad-
ing. Asset prices switch irregularly between these different regimes, creating stylized
facts, such as time-varying, clustered volatility (GARCH effects) and fat tails, similar
to those observed in real financial data. Here we briefly discuss the asset pricing model
with heterogeneous beliefs of Brock and Hommes (1998), which may be viewed as a
stylized, more tractable version of the SFI artificial stock market. We only illustrate the
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main features of the model by a simple 4-type example; an extensive treatment of the
model is given in Chapter 6.

Agents can either buy an infinitely lived risky asset that pays an uncertain dividend
yt , or invest in a risk free asset that pays a fixed rate of return r . Dividends follow an
exogenous stochastic process, known to all agents. In a perfectly rational world, all
traders expect the future price of the risky asset to follow the fundamental price p∗

t ,
given by the discounted sum of expected future dividends. Boundedly rational traders,
however, believe that in a heterogeneous world prices can in general deviate from their
fundamental value. Let

xt = pt −p∗
t (1.23)

denote the price deviation from the fundamental value. In the asset pricing model with
heterogeneous beliefs, with different trader types h, 1 ≤ h ≤ H , the market clearing
price deviation from the fundamental benchmark is determined by

(1 + r)xt =
H∑

h=1

nhtfht , (1.24)

where nht is the time-varying fraction of trader type h in period t and fht is the forecast
of type h at time t . Each forecasting rule fh may be viewed as a “model of the market” of
type h according to which prices will deviate from the fundamental price. For example,
a forecasting strategy fh may correspond to a technical trading rule, based upon short
run or long run moving averages, or a trading range break strategy of the type used in
real markets.

A convenient feature of our model formulation in terms of deviations from a bench-
mark fundamental is that it can be used for empirical and experimental testing of the
theory. In this general setup, the benchmark rational expectations asset pricing model
will be nested as a special case, with all forecasting strategies fh ≡ 0.

An evolutionary selection mechanism describes how the fractions of different trader
types will be updated over time. Fractions are updated according to an evolutionary
fitness measure Uht , given, e.g., by past realized profits or forecasting performance.
Without discussing it in detail here, we give the expression for realized profits in
deviations from the fundamental8:

Uht = (
xt − (1 + r)xt−1

)(fh,t−1 −Rxt−1

aσ 2

)
. (1.25)

We assume here that there are no information-gathering costs, so that all forecasting
strategies are freely available to all agents. Fractions of each type are given by a discrete

8 Realized profits for type h in (1.25) are obtained by multiplying the realized excess return of the risky asset
over the risk free asset times the demand for the risky asset by traders of type h. The demand is derived from
mean-variance maximization of expected next period’s wealth. The parameter a represents risk aversion while
σ 2 represents constant conditional belief about the variance; see Chapter 6, Section 6.3 for details.
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choice or multinomial logit model

nht = eβUh,t−1

Zt−1
, Zt−1 =

H∑
h=1

eβUh,t−1 , (1.26)

where Zt−1 is a normalization factor, so that all fractions nht add up to one. The crucial
feature of (1.26) is that the higher the fitness of trading strategy h, the more traders
will select strategy h. As before, the parameter β is the intensity of choice, measuring
how sensitive the mass of traders is to selecting the optimal prediction strategy. The
financial market with heterogeneous traders is represented by the market equilibrium
equation (1.24) coupled with an evolutionary selection of strategies (1.25–1.26). Prices
and beliefs thus coevolve over time.

What do price fluctuations in this stylized asset pricing model with heterogeneous
beliefs look like? Brock and Hommes (1998) present an analysis of the evolutionary
dynamics in the case of simple, linear forecasting rules

fht = ghxt−1 + bh, (1.27)

where the parameter gh represents a trend and the parameter bh represents an upward
or downward bias in prices. These very simple linear predictors were chosen as the
simplest class of rules and to keep the analysis of the dynamical behavior tractable.
It turns out that a rational route to randomness, that is, a bifurcation route to strange
attractors arises as the intensity of choice to switch prediction or trading strategies
becomes high, even when there are no information-gathering costs and all fundamental
and technical trading strategies are freely available to all agents. Figure 1.7 shows
chaotic price fluctuations on a strange attractor in a typical example, with four different
types, fundamentalists versus three different classes of chartists. The chaotic price
fluctuations are characterized by an irregular switching between phases of close-to-
the-EMH-fundamental-price fluctuations, phases of “optimism” with prices following
an upward trend, and phases of “pessimism,” with (small) sudden market crashes. In
fact, one could say that prices exhibit evolutionary switching between the fundamental
value and temporary speculative bubbles.

Under homogeneous, rational expectations and a constant mean dividend process,
the asset price dynamics is extremely simple: one constant price equal to the funda-
mental at all dates. Under the hypothesis of heterogeneous expectations among traders,
the situation changes dramatically, and an extremely rich dynamics of asset prices and
returns emerges, with bifurcation routes to strange attractors. In contrast to Friedman’s
hypothesis, in the evolutionary competition driven by (short run) realized profits, fun-
damentalists cannot drive out chartists trading strategies. The market is characterized
by an irregular switching between periods where fundamental analysis dominates and
other periods where technical trading is more profitable. Short run profit opportunities
lead boundedly rational agents to adopt trend-following strategies, causing persistent
price deviations from fundamentals. In empirical work, e.g., Brock et al. (1992), it has
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Figure 1.7. Chaotic (top left) and noisy chaotic (top right) price time series of asset pricing model
with heterogeneous beliefs with four trader types. Strange attractor (bottom left) and enlargement of
strange attractor (bottom right). Belief parameters are g1 = 0, b1 = 0; g2 = 0.9, b2 = 0.2; g3 = 0.9,
b3 = −0.2 and g4 = 1 + r = 1.01, b4 = 0; other parameters are r = 0.01 and β = 90.5.

been shown that simple technical trading rules applied to real data such as the Dow
Jones Index can indeed yield positive returns.

1.6.1 Estimation of a model with fundamentalists versus chartists
From a qualitative viewpoint, the chaotic price fluctuations in the asset pricing model
with heterogeneous beliefs bear a close resemblance to observed fluctuations in real
markets. But do the endogenous irregular fluctuations explain a statistically significant
part of stock price movements? Here, we briefly discuss an estimation of a heteroge-
neous agent model, with fundamentalists versus trend followers, using yearly S&P 500
stock market data; see Chapter 7 for a more detailed discussion.

Figure 1.8 shows time series of yearly log prices of the S&P 500 stock market index,
1880–2003, around a benchmark fundamental (top left panel) and the corresponding
price-to-earnings (PE-)ratio (top right panel). The fundamental price is a nonstationary
stochastic process, following an exogenous stochastic earnings process with constant
mean growth rate. The S&P 500 shows large swings around this RE benchmark fun-
damental. These large swings become even more pronounced from the PE-ratio plots.
If the asset price would perfectly track its fundamental value, the PE-ratio would be
constant at 17.5, as indicated by the horizontal line (right panel). For the S&P 500,
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Figure 1.8. Simulated log price series (left panel) and PE-ratios (right panel) for estimated 2-type
model with fundamentalists versus trend followers. Parameters: g1 = 0.80, g2 = 1.097 and β = 7.54.
Top-panel: logarithm S&P 500 and fundamental (left) and PE ratio (right). Second panel: fitted model
with reshuffled residuals. Third panel: simulated model with normally distributed shocks with mean 0
and σ = 2.975. Bottom panel: estimated fraction of fundamentalists (left) and average extrapolation
coefficient (right).
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however, the PE-ratio is characterized by long swings and persistent deviations from
the benchmark fundamental ratio. The PE-ratio fluctuates between 8 and 28 for about
100 years, but in the late 1990s, the PE-ratio “explodes” to unanticipated high values
of more than 45.

Boswijk et al. (2007) estimated a 2-type model with evolutionary strategy switching
for the S&P 500 PE-ratio. The two forecasting functions were f1t = g1xt−1 and f2t =
g2xt−1, with estimated parameter values g1 = 0.80 and g2 = 1.097, implying that
type 1 behaves as a fundamentalist expecting mean-reversion of the PE-ratio toward
the fundamental benchmark, while type 2 are trend followers expecting the trend to
continue and the price to deviate further from fundamental value. Figure 1.8 shows plots
of the fitted model time series and simulations of the estimated model, with shuffled
estimated residuals (second panel) as well as normally distributed shocks with mean
zero and the same variance (third panel). The simulation with reshuffled residuals
shows temporary bubbles similar to the original data series, except that the timing
of the large bubble is different (due to the reshuffling). A typical model simulation
with normally distributed shocks of the same variance will show occasionally large
deviations, up to 45 or even higher, of the PE-ratio from its fundamental benchmark.
The time series of the fraction of fundamentalists (bottom left panel) is characterized
by irregular switching between periods where almost all agents are fundamentalists
or trend followers respectively. Finally, a simulated time series of the average market
sentiment, that is, the extrapolation coefficient averaged over the population of traders,

ϕt = n1t g1 +n2t g2, (1.28)

is shown (right bottom panel). The average extrapolation coefficient switches irregu-
larly, and occasionally exceeds 1, causing phases of strong trend extrapolation.

These simulations show that endogenous speculative dynamic of a simple asset pric-
ing model with two different belief types, fundamentalists versus chartists, around a
benchmark fundamental may explain a significant part of observed stock price fluctu-
ations in real markets. According to our model temporary price bubbles are triggered
by news about fundamentals, but may become strongly amplified by trend-following
strategies. For example, positive news about the economy during a number of con-
secutive periods may trigger a rise in stock prices, which then may become strongly
reinforced by trend-following trading behavior. This may explain the strong rise in
stock prices worldwide in the late 1990s, when a new internet technology provided
“good news” for the growth of the economy, triggering a rise in stock prices. Our esti-
mated model suggests that, driven by short run profit opportunities, trend-following
strategies strongly amplified the rise in stock prices in the late 1990s, thus contributing
significantly to the subsequent excessive rise in stocks and the “dot-com” bubble.

1.7 Learning-to-forecast experiments

In the nonlinear economic models discussed so far, expectations play an important role.
But how do individuals in complex markets actually form expectations, and what is
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the aggregate outcome at the macro level of the interactions of individual forecasts at
the micro level? Laboratory experiments with human subjects, where economic funda-
mentals are under control of the experimenter, are well suited to study how individuals
form expectations and how their interaction shapes aggregate market behavior.

The results from laboratory experiments are somewhat mixed, however. Early exper-
iments, with various market designs such as double auction trading, show convergence
to equilibrium (Smith, 1962, Plott and Sunder, 1982), while more recent asset pric-
ing experiments exhibit persistent deviations from equilibrium with temporary bubbles
and sudden crashes (Smith et al., 1988). A clear explanation of these different market
phenomena is still lacking (e.g., Duffy, 2008a,b) and this is an important challenge
for experimental macroeconomics. It is particularly challenging to provide a univer-
sal theory of learning which is able to explain both the possibilities of convergence
and persistent deviations from equilibrium. It is intuitively plausible that such a theory
needs to be based on heterogeneous expectations and learning.

Here we briefly discuss some recent results from Anufriev and Hommes (2012a,b)
to fit a heuristics switching model to laboratory experiments on expectation formation;
see Chapter 8 for more details. In the learning-to-forecast experiments of Hommes et al.
(2005), three different outcomes have been observed in the same experimental setting.
Individuals had to make a two-period-ahead forecast of the price of a risky asset, say
a stock. These individual forecasts determine aggregate demand and supply, leading
to a market clearing price. The equilibrium price was in fact determined in exactly the
same way as the asset pricing model with heterogeneous beliefs, as discussed above.
Based upon the realized market price and without knowledge of the forecasts of others,
individuals were then asked to make their next forecasts, and so on. The experiment
lasted 50 periods. The environment in this experiment is stationary and if all agents
would behave rationally or learn to behave rationally, the market price would be equal
to (or quickly converge to) a constant fundamental price pf = 60. In the experiment
coordination of individual forecasts occurred, but three different aggregate market
outcomes have been observed (see Figure 1.9, left panels):

(a) slow, monotonic convergence to the constant fundamental price level;
(b) slowly converging oscillatory movements around the fundamental price; and
(c) persistent oscillatory fluctuations around the fundamental.

A simple model based on evolutionary selection of forecasting heuristics explains
how coordination of individual forecasts arises leading to these different aggregate
market outcomes. The nonlinear switching model exhibits path dependence, since the
only differences between the model simulations in Figure 1.9 are the initial states (i.e.,
initial prices and initial distribution over the heuristics).

The model works as follows (see Chapter 8 for more details). Agents select rules
from a population of simple forecasting rules or heuristics. To keep the model as sim-
ple as possible, but rich enough to explain the different observed price patterns in the
experiments, only four heuristics have been chosen. These heuristics are intuitively
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Figure 1.9. Left panels: prices for laboratory experiments (bold) and heuristics switching model (dot-
ted). Right panels: fractions of four forecasting heuristics: adaptive expectations (ADA), weak trend
followers (WTR), strong trend followers (STR) and learning anchor and adjustment rule (LAA).
Coordination of individual forecasts explains three different aggregate market outcomes: mono-
tonic convergence to equilibrium (top panel), oscillatory convergence (middle panel) and permanent
oscillations (bottom panel).
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plausible and were among the rules estimated for the individual forecasts in the exper-
iment (these estimations were based on the last 40 observations, to allow for a short
learning phase). The following four heuristics have been used in the simulations:

pe
1,t+1 = 0.65pt−1 + 0.35pe

1,t , (1.29)

pe
2,t+1 = pt−1 + 0.4(pt−1 −pt−2), (1.30)

pe
3,t+1 = pt−1 + 1.3(pt−1 −pt−2), (1.31)

pe
4,t+1 = 1

2
(pt−1 + p̄)+ (pt−1 −pt−2), (1.32)

where p̄ in (1.32) is the sample average of realized prices, i.e., p̄ = ∑t−1
j=0 pj .

Adaptive expectations (ADA) in (1.29) means that the price forecast for period t +1
is a weighted average of the last observed price pt−1 (weight 0.65) and the last own
forecast pe

1,t (weight 0.35). Note that the last observed price has two lags (participants
had to make a two-period-ahead forecast), while the last own forecast has only one
lag. The weak trend rule (WTR) takes the last observed price level pt−1 as an anchor
or reference point and extrapolates the last observed price change pt−1 − pt−2 by a
(small) factor 0.4. The strong trend rule (STR) in (1.31) is the same as the WTR, except
that is has a larger extrapolation factor 1.3. Finally, the learning anchor and adjustment
heuristic (LAA) uses a (time-varying) anchor or reference point, defined as an (equally
weighted) average between the last observed price and the sample average of all past
prices, and extrapolates the last price change from there.The LAArule has been obtained
from a related, simplerAR(2) rule pe

t+1 = 1
2 (pt−1 +60)+(pt−1 −pt−2), after replacing

the (unknown) fundamental price 60 by the observable sample average p̄. Such anAR(2)
rule (or similar ones) has been estimated for a number of individual forecasts in the
experiments. The first three rules are first-order heuristics in the sense that they only
use the last observed price level, the last forecast and/or the last observed price change.
The fourth rule combines adaptive learning of the price level and trend extrapolation,
and therefore we refer to it as a learning anchor and adjustment heuristic (LAA).

The simulation model is based upon evolutionary switching or reinforcement learn-
ing between the four forecasting heuristics, driven by their past relative performance.
Heuristics that have been more successful in the past will attract more followers. The
performance measure is (minus) squared forecasting errors, similar to the financial
rewards in the experiment. The performance of heuristic h is given by

Uht = −(pt −pe
h,t )

2 +ηUh,t−1. (1.33)

The parameter η measures the relative weight agents give to past errors and thus repre-
sents their memory strength. When η = 0, only the performance of the last period plays
a role in the updating of the shares assigned to the different rules. For 0 < η ≤ 1, all
past prediction errors affect the heuristic’s performance.
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Given the performance measure, the weight assigned to rules is updated according
to a discrete choice model with asynchronous updating

nh,t+1 = δnht + (1 − δ)
eβUht∑4
h=1 eβUht

. (1.34)

There are two important parameters in (1.34). The parameter 0 ≤ δ ≤ 1 gives some
persistence or inertia in the weight assigned to rule h, reflecting the fact that not all the
participants are willing to update their rule in every period. Hence, δ may be interpreted
as the fraction of individuals who stick to their previous strategy. In the extreme case
δ = 1 the initial weights assigned to the rules never change, no matter what their past
performance is. If 0 ≤ δ < 1, in each period a fraction 1− δ of participants update their
rule according to the well known discrete choice model. The parameter β represents the
intensity of choice, measuring how sensitive individuals are to differences in strategy
performance. The higher the intensity of choice β, the faster individuals will switch to
more successful rules. In the extreme case β = 0, the fractions in (1.34) move to an
equal distribution independent of their past performance. At the other extreme β = ∞,
all agents who update their heuristic (i.e., a fraction 1−δ) switch to the most successful
predictor.

The left panel of Figure 1.9 shows that the heuristics switching model matches all
three different patterns, slow monotonic convergence to the fundamental price, damp-
ened oscillatory price movements and persistent price oscillations, in the laboratory
experiments. In all simulations in Figure 1.9, the parameters have been fixed at the
same values, and the simulations only differ in the initial states, that is, the initial prices
and the initial distribution of agents over the population of heuristics. The nonlinear
heuristics switching model therefore exhibits path dependence, since the simulations
only differ in initial states. In particular, the initial distribution over the population of
heuristics is important in determining which pattern is more likely to emerge. The right
panels of Figure 1.9 plot the corresponding transition paths of the fractions of each of
the four forecasting heuristics. In the case of monotonic convergence (top panel), agents
start uniformly distributed over the heuristics and the four fractions (and the individual
forecasts) remain relatively close together, causing slow (almost) monotonic conver-
gence of the price to the fundamental equilibrium 60. In the second simulation (middle
panel), a large initial fraction of (strong) trend followers leads to a strong rise of market
prices in the first 7 periods, followed by large price oscillations. After period 10 the
fraction of strong trend followers decreases, while the fraction of the fourth rule, the
learning anchor and adjustment heuristic, rises to more than 80% after 30 periods. At
turning points, the flexible LAA heuristic predicts better than the static STR rule, which
overestimates the price trend. After 35 periods the fraction of the LAA heuristic starts
slowly decreasing, and consequently the price oscillations slowly stabilize. In the third
simulation (bottom panel) weak and strong trend followers each represent 40% of the
initial distribution of heuristics, causing a rise in prices which, due to the presence of
weak trend followers, is less sharp than in the previous case. However, already after 5
periods the fraction of the LAA rule starts to increase, because once again at turning
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points it predicts better than the static STR and LTR rules, which either overestimate or
underestimate the price trend at turning points. The fraction of the LAA heuristic grad-
ually increases and dominates the market within 20 periods, rising to more than 80%
after 40 periods, explaining coordination of individual forecasts as well as persistent
price oscillations around the long run equilibrium level.

These simulations illustrate how the interaction and evolutionary selection of individ-
ual forecasting heuristics may lead to coordination of individual behavior upon different
price patterns and enforce path-dependent aggregate market outcomes. Individuals are
behaviorally rational and use simple heuristics consistent with recent observations.
Evolutionary learning leads to switching between simple forecasting heuristics based
upon recent performance and different types of aggregate behavior may emerge.

1.8 Simple complex systems

The economy is a complex system, with many interacting consumers, firms, investors,
banks, etc. But how complex should a model be to describe economic complexity? One
could think of a detailed agent-based model (ABM) using a “bottom up” approach to
model agents’ interactions at the micro level and study its aggregate macro behavior.
ABMs are becoming increasingly popular in finance and in macro; see, e.g., the collec-
tion of papers in the Handbook of Computational Economics, Volume 2: Agent-Based
Computational Economics (Tesfatsion and Judd, Eds., 2006) and the Handbook of
Financial Markets. Dynamics and Evolution (Hens and Schenk-Hoppé, Eds., 2009). For
ABMs in macro; see, e.g., the monographs of Aoki (2002) and Delli-Gatti et al. (2008);
DeGrauwe (2010a,b) contains a stimulating discussion of a “bottom up” approach of
ABMs in behavioral macroeconomics.

While detailed ABMs present an important challenge and promising approach in
economic modeling, this book emphasizes simple complex system models as comple-
mentary tools to gain insights in nonlinear interaction mechanisms. The key features of
these models are that they are nonlinear and that there is some form of heterogeneity
and endogenous switching between heterogeneous decision rules. Since the economy
is inherently uncertain, the “law of motion” of the economy is stochastic. A simple
complex system with heterogeneous agents typically is of the form

Xt+1 = F(Xt ;n1t , ...,nHt ;λ;δt ;εt ), (1.35)

where F is a nonlinear mapping, Xt is a vector of state variables, say prices (or lagged
prices), njt is the fraction or weight of agents of strategy type h, 1 ≤ h ≤ H , λ is a vector
of parameters and δt and εt are (vectors of) noise terms. There are (at least) two types
of uncertainty relevant for economic modeling, intrinsic noise and model approxima-
tion errors. Intrinsic noise refers to intrinsic uncertainty about economic fundamentals
(preferences, technology, future earnings, future growth, etc.) in the economy. The noise
term δt then represents unexpected random shocks, “news” about economic fundamen-
tals. The second type of noise, model approximation errors, represents the fact that a
model can only be an approximation of the real world and that part of the economy
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remains not modeled. Approximation errors will also be present in a physics model,
although the magnitude may be smaller. In a financial market, one may for example
have a (small) fraction of “noise traders” who trade randomly and whose behavior
therefore is uncertain. The law of motion of the economy is then a nonlinear stochastic
system as in (1.35).

In general, the nonlinear stochastic model can be a detailed ABM, a highly nonlinear
complex system with many different agent types and of high dimension. For a detailed
ABM it will be difficult to use analytical tools and one will mainly have to resort to
numerical simulations. In this book, we will emphasize simple complex systems, where
the dimension of the system is relatively low, the number of different agent types
is relatively small, and the system is simple enough to be studied, at least partially,
by analytical tools. Since the dynamical behavior of simple complex systems is rich, a
simple nonlinear system model buffeted with noise as in (1.35) may explain a significant
part of observed fluctuations and stylized facts in economic and financial markets.
An important goal in simple complex systems modeling is to match the statistical
regularities of empirical data both at the macro level and at the micro level. Hence, one
would like to match both individual behavioral decision rules, e.g., calibrating them
with laboratory experiments, and, at the same time, match aggregate macro behavior
and time series properties.

Aspecial case of the nonlinear stochastic system (1.35) arises when all noise terms are
set equal to their unconditional mean. We will refer to this system as the (deterministic)
skeleton denoted by

Xt+1 = F(Xt ;n1t , ...,nHt ;λ). (1.36)

In order to understand the properties of the general stochastic model (1.35) it is important
to understand the properties of the nonlinear deterministic skeleton. In particular, one
would like to impose as little structure on the noise process as possible, and relate
the individual decision rules as well as the aggregate stylized facts of the general
stochastic model (1.35) directly to generic properties of the underlying deterministic
skeleton.This naturally leads to the study of the dynamics of simple nonlinear dynamical
systems.

1.9 Purpose and summary of the book

This book serves three important purposes. First, it presents simple examples of com-
plex systems applications in economics and finance. The simplicity of these examples
should help the reader to grasp the essential features of nonlinear complex systems.
Second, the methodological part (Chapters 2 and 3) serves as a primer to nonlinear
dynamics, introducing the key tools in the analysis of simple nonlinear systems that
should be part of the toolbox of any quantitative economist. Third, our main focus
is on bounded rationality and heterogeneous expectations in simple complex adap-
tive economic systems. In particular, we extensively discuss a theory of behavioral
rationality, heterogeneous expectations and learning in complex economic systems and
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confront this theory, both at the macro and the micro level, with empirical time series
and laboratory experimental data.

The book is organized in seven chapters following this introduction. Two method-
ological chapters, Chapters 2 and 3, give an introduction to the mathematical tools
of nonlinear, discrete time dynamical systems. Chapter 2 deals with one-dimensional
systems, discusses the (in)stability of steady states, introduces elementary bifurca-
tions (tangent, period-doubling, pitchfork, transcritical), defines the notion of chaos
and Lyapunov exponents and discusses the period-doubling bifurcation route to chaos.
Chapter 3 deals with two- and higher-dimensional systems, discusses the saddle-node
and the Hopf (or Neimark–Sacker) bifurcations, introduces the “breaking of an invariant
circle” bifurcation route to chaos and strange attractors and introduces the key notions
related to chaotic dynamics, such as horseshoes, homoclinic orbits, homoclinic bifurca-
tions, Lyapunov exponents and strange attractors. We have made an attempt to provide
an introduction to nonlinear dynamics for non-specialists and a general audience of
economists, emphasizing the most important concepts to be used in economic appli-
cations and adding references to more advanced mathematical treatments whenever
appropriate.

The second part of the book, Chapters 4, 5 and 6, contains simple examples of com-
plex systems modeling in economics and finance. Chapter 4 discusses the nonlinear
cobweb model with various benchmark homogeneous expectations: naive expectations,
rational expectations, adaptive expectations and linear backward-looking expectations.
In a nonlinear cobweb economy with monotonic demand and supply curves, all of
these simple adaptive and backward-looking expectations may lead to chaotic price
fluctuations. These benchmark cases provide simple didactic examples of stylized com-
plex dynamics applications to economics, illustrating how expectations feedback may
generate complicated dynamics in a nonlinear environment. Chapter 4 also discusses
the notion of consistent expectations equilibrium, where behaviorally rational agents
learn the “optimal” linear AR(1) rule in a complex, nonlinear environment. Chapter 5
discusses the cobweb model with heterogeneous expectations, focusing on 2-type exam-
ples with a sophisticated but costly expectations rule – rational expectations, fundamen-
talist forecast, a contrarian rule or adaptive learning – competing against a simple, freely
available forecasting heuristic such as naive expectations. A common finding is a ratio-
nal route to randomness, i.e., a bifurcation route to chaos, as agents become more sensi-
tive to differences in evolutionary fitness. Moreover, the complexity of the price dynam-
ics increases as the learning detects and exploits more structure in price fluctuations.

Chapter 6 discusses a standard financial market asset pricing model with heteroge-
neous beliefs. A number of simple examples, with two, three and four trader types –
fundamentalists versus chartists – is discussed. A rational route to randomness arises,
even when there are no information-gathering costs for more sophisticated strategies.
Hence, simple technical trading rules are not driven out of the market, but survive
evolutionary competition driven by (short run) realized profits. Another simple 2-type
example, fundamentalists versus conditional trend followers, exhibits coexistence of a
stable fundamental steady state and a stable limit cycle. Hence, there is path dependence:



38 Behavioral Heterogeneity in Complex Economic Systems

the market may either converge to the stable fundamental price or it may perpetu-
ally oscillate around the fundamental price with the fractions of fundamentalists and
chartists changing over time. In the presence of noise, the system exhibits clustered
volatility, with the market switching irregularly between close to the fundamental price
fluctuations and large swings and excess volatility in asset prices. Finally, the case with
many different expectations types is discussed. The model with many different trader
types is well approximated by the so-called large type limit (LTL), a tool that can be
used to study markets with many different trader types.

The final part of the book, Chapters 7 and 8, discusses the empirical validity of
heterogeneous expectations models. Chapter 7 discusses the estimation of a simple
2-type asset pricing model with fundamentalists versus trend followers on yearly data
of the S&P 500 stock market index. Behavioral heterogeneity is statistically significant
with large swings in the fractions of both types of traders. In particular, the heuristics
switching model explains the dot-com bubble as being triggered by good news about
economic fundamentals – a new internet technology – strongly amplified by technical
trading.

Finally, Chapter 8 discusses the empirical validity of heterogeneous expectations
models by laboratory experiments with human subjects. Learning-to-forecast exper-
iments, where subjects’ only task is to forecast prices in an expectations feedback
environment, in the cobweb and the asset pricing frameworks are discussed. Coordina-
tion on different types of aggregate market behavior – stable convergence or persistent
price oscillations – arises. A simple heuristics switching model – exhibiting path depen-
dence – can explain coordination on these different aggregate outcomes. Another
striking finding is that negative expectations feedback markets, such as commodity
prices in a cobweb framework where high price expectations yield high production
and thus low realized market prices, are rather stable, while positive feedback markets,
such as speculative asset markets, tend to oscillate around the fundamental price. The
simple heuristics switching model explains both types of aggregate behavior as well
as individual behavior. In the negative feedback market, adaptive expectations domi-
nates evolutionary competition, because the trend-following heuristics perform poorly.
In contrast, in positive feedback markets trend-following rules perform relatively well
and amplify price oscillations, possibly leading to bubbles and crashes.


