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Nonlinear Cobweb model with Homogeneous Beliefs (Chapter 4)

Cobweb (‘hog cycle’) Model

market for non-storable consumption good (e.g. corn, hogs)
production lag; producers form price expectations one period ahead
partial equilibrium; market clearing prices

pe
t : producers’ price expectation for period t

pt : realized market equilibrium price pt
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Nonlinear Cobweb model with Homogeneous Beliefs (Chapter 4)

Cobweb (‘hog cycle’) Model (continued)

D(pt) = a − dpt(+εt) a ∈ R, d ≥ 0 demand (1)

Sλ(pe
t ) = tanh(λ(pe

t − 6)) + 1, λ > 0, supply (2)

D(pt) = Sλ(pe
t ) market clearing (3)

pe
t = H(pt−1, ..., pt−L), expectations (4)

Price dynamics: pt = D−1Sλ(H(pt−1, ..., pt−L))
Expectations Feedback System:
dynamical behavior depends upon expectations hypothesis;
supply driven, negative feedback
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Nonlinear Cobweb model with Homogeneous Beliefs (Chapter 4)

Demand and (nonlinear) Supply in Cobweb Model
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Nonlinear Cobweb model with Homogeneous Beliefs (Chapter 4)

Expectations

naive expectations: pe
t = pt−1

adaptive expectations; pe
t = wpt−1 + (1− w)pe

t−1
backward looking average expectations pe

t = w1pt−1 + wpt−2

rational expectations: pe
t = Et [pt ] = p∗
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Nonlinear Cobweb model with Homogeneous Beliefs (Chapter 4) Naive expectations

Naive Expectations Benchmark (pe
t = pt−1)

unstable steady state iff S ′(p∗)/D′(p∗) < −1
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Regular period 2 price cycle with systematic forecasting errors

Agents will learn from their mistakes and adapt forecasting behavior
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Nonlinear Cobweb model with Homogeneous Beliefs (Chapter 4) Rational expectations

Rational Expectations (Muth, 1961)

Expectations are model consistent
all agents are rational and compute expectations from market equilibrium
equations

pe
t = Et [pt ] or pe

t = pt or pe
t = p∗

implied self-fulfilling RE price dynamics

pt = p∗ + δt

perfect foresight, no systematic forecasting errors

Important Note: this is impossible in complex, heterogeneous world
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Nonlinear Cobweb model with Homogeneous Beliefs (Chapter 4) Rational expectations

Rational Expectations Benchmark (p∗ = 5.93)
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and high computing abilities

Cars Hommes (CeNDEF, UvA) Complex Systems CEF 2013, Vancouver 10 / 47



Nonlinear Cobweb model with Homogeneous Beliefs (Chapter 4) Adaptive expectations

Adaptive Expectations (“error learning”)
Nerlove 1958

pe
t = (1− w)pe

t−1 + wpt−1

= pe
t−1 + w(pt−1 − pe

t−1)

= wpt−1 + (1− w)wpt−2 + · · · (1− w)j−1wpt−j + · · ·

weighted average of past prices

1-D (expected) price dynamics: pe
t = wD−1S(pe

t−1) + (1− w)pe
t−1

stable steady state if − 2
w + 1 < S′(p∗)

D′(p∗)(< 0)

more stabilizing in linear models, but
possibly low amplitude chaos in nonlinear models
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Nonlinear Cobweb model with Homogeneous Beliefs (Chapter 4) Adaptive expectations

Adaptive Expectations may lead to Chaos
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leads to non-monotonic chaotic map
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Nonlinear Cobweb model with Homogeneous Beliefs (Chapter 4) Adaptive expectations

Adaptive Expectations lead to Chaotic Forecast Errors
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chaotic prices chaotic errors noisy errors

In a nonlinear world, adaptive expectations may lead to
(small) chaotic forecasting errors
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Nonlinear Cobweb model with Homogeneous Beliefs (Chapter 4) Adaptive expectations

Non-monotonic chaotic map for monotonic D and S

C.H. Hommes / Journal o~Eco~omic Behavior and Organization 24 (1994) 315-335 327 

x 
Fig. 4. Graphs of the map f, for different values of the expectations weight factor w, with 
a=0.8, b=0.25, and 1=4. For w close to 0 fw has a globally stable equilibrium. For w close to 1 
f, has a stable period 2 cycle. For w close to 0.5 the map f, is chaotic. 

the parameter a, in~niteIy many period doubling bifurcations occur as w is 
increased from 0 to w2 and infinitely many period halving bifurcations occur, 
as w is increased from wa to 1. The parameter a has to be chosen in such a 
way that the supply and demand curves intersect at some ‘suitable’ point 
between the steep and the flat part of the S-shaped supply curve. 

4.5. Geometric explanation of the occurrence of chaos 

This subsection presents a geometric explanation how the combination of 
adaptive expectations and nonlinear, monotonic supply and demand curves 
can lead to erratic price fluctuations. First consider the case of a linear 
demand and an S-shaped supply curve. To stress the dependence on w, we 
write f, for the map fn,b,w,l in (12). Fig. 4 shows the graphs of f,, for 
different values of w. With the parameters a, b and 1 as in subsection 4.4, the 
maps f, satisfy the following properties: 

WI 

(W2) 

(W3) 

For 0~ WC l/17 the map f, is increasing and has a globally stable 
fixed point. For l/17 < w < 1, f, is non-monotonic and has two critical 
points. 
For w= 1, f, is decreasing and has a stable period 2 orbit. For w close 
to 1, wf 1, f, is non-monotonic and has a stable period 2 orbit. 
All maps f, have the same fixed point x_ The graph of fw lies 
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Nonlinear Cobweb model with Homogeneous Beliefs (Chapter 4) Adaptive expectations

Adaptive Expectations in a Nonlinear World

adaptive expectations is stabilizing in the sense that it reduces the
amplitude of price fluctuations and forecast errors
small amplitude chaotic price fluctuations may arise around the
unstable steady state
forecast errors may be chaotic, highly irregular, with little systematic
structure
in a nonlinear world, adaptive expectations may be a
behaviorally rational strategy for boundedly rational agents
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Nonlinear Cobweb model with Homogeneous Beliefs (Chapter 4) Adaptive expectations

Ken Arrow on Heterogeneous Expectations

“One of the things that microeconomics teaches you is that individuals are
not alike. There is heterogeneity, and probably the most important
heterogeneity here is heterogeneity of expectations. If we didn’t have
heterogeneity, there would be no trade. But developing an analytic model
with heterogeneous agents is difficult.”

(Ken Arrow, In: D. Colander, R.P.F. Holt and J. Barkley Rosser (eds.),
The Changing Face of Economics. Conversations with Cutting Edge
Economists. The University of Michigan Press, Ann Arbor, 2004, p. 301.)
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Nonlinear Cobweb model with Homogeneous Beliefs (Chapter 4) Adaptive expectations

Cobweb Model with Homogeneous Expectations

Demand: D(pt) = a − dpt(+εt), a ∈ R, d ≥ 0.
Supply: Sλ(pe

t ) = spe
t , s > 0.

Market clearing: D(pt) = Sλ(pe
t ).

Expectations: pe
t = H(pt−1, ..., pt−L).

Price dynamics: pt = D−1Sλ(H(pt−1, ..., pt−L)).

Note: linear supply curve derived from profit maximization with
quadratic cost function c(q) = q2/(2s).
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Rational versus naive

Cobweb Model with Heterogeneous Beliefs I.

Market clearing:

a − dpt = n1tspe
1t + n2tspe

2t (+εt),

where n1t and n2t = 1− n1t are fractions of the two types.

Forecasting rules:
1 rational: pe

1t = pt ,
2 naive: pe

2t = pt−1.

Information gathering costs: rational - C > 0; naive - free.
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Rational versus naive

Cobweb Model with Heterogeneous Beliefs II.

Market clearing becomes:

a − dpt = n1tspt + n2tspt−1 (+εt)

Price dynamics:
pt =

a − n2tspt−1
d + n1ts

.

How do fractions change over time?
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

Evolutionary or Reinforcement Learning

Agents can choose between different types of forecasting rules.

Sophisticated rules may come at information gathering costs C > 0
(Simon, 1957), simple rules are freely available.

Agents evaluate the net past performance of all rules, and tend to
follow rules that have performed better in the recent past.

Evolutionary fitness measure ≡ past realized net profits.
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

Discrete Choice Model

Fitness Measure: random utility

Ũht = Uht + εiht ,

Uht : deterministic part of fitness measure,
εiht : idiosyncratic noise, IID, extreme value distr.
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

Fractions of Belief Types

Discrete choice or multi-nomial logit model:

nht = eβUh,t−1 / Zt−1,

where Zt−1 =
∑

eβUh,t−1 is a normalization factor.

β is the intensity of choice, inversely related to SD idiosyncratic
noise: β ∼ 1/σ.

β = 0: all types equal weight (random choice).
β =∞: “neoclassical limit”, i.e. all agents choose best predictor.
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

Fitness Measure

Evolutionary Fitness Measure:
weighted average of past realized net profits

Uht = πht + wUh,t−1

πht net realized profit (minus costs) strategy h.

w measures memory strength
w = 1: infinite memory; fitness ≡ accumulated profits,
w = 0: memory one lag; fitness most recently realized net profit.
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

Fitness Measure Profits

Profits of type h:

πht = ptspe
ht −

(spe
ht)

2

2s .

Profits of rational agents:

π1t =
s
2p

2
t − C

Profits of naive agents:

π2t =
s
2pt−1(2pt − pt−1)
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

Profit difference

Difference in profits:

π1t − π2t =
s
2(pt − pt−1)

2 − C .

difference in fractions:

mt+1 = n1,t+1 − n2,t+1 = Tanh(β2 [π1t − π2t ])

= Tanh(β2 [
s
2(pt − pt−1)

2 − C ])

When the costs for rational expectations outweigh the forecasting
errors of naive expectations, more agents will buy the RE forecast.
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

2-D dynamic system

Pricing equation :

pt =
a − n2tspt−1
d + n1ts

=
2a − (1−mt)spt−1
2d + (1+mt)s

.

Evolutionary selection

mt+1 = Tanh(β2 [
s
2(pt − pt−1)

2 − C ]).

Note Timing:
1 Old fractions determine market prices.
2 Realized market prices determine new fractions.
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

2-D dynamic system in deviations

deviation from RE fundamental price:

xt = pt − p∗

xt =
−(1−mt)sxt−1
2d + (1+mt)s

mt+1 = Tanh(β2 [
s
2(xt − xt−1)

2 − C ]).
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

Properties of the 2-D Dynamics

If all agents are rational, then pt ≡ p∗ = a/(d + s).

If all agents are naive, then pt =
a−spt−1

d .

Unique steady state E = (p∗,m∗), m∗ = Tanh(−βC/2).

If pt−1 = p∗, then pt = p∗ and mt = m∗ :
stable manifold contains vertical line through steady state.

If s/d < 1, then globally stable steady state
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

"Neo-classical" limit case: β =∞

If s/d > 1, C > 0 and β = +∞ then

Steady state is locally unstable saddle point.
Steady state is globally stable.

Important note: homoclinic orbits!!
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

Chaotic Dynamics
Irregular switching between cheap destabilizing free riding and
costly sophisticated stabilizing predictor
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

Rational Route to Randomness

If s/d > 1 and C > 0, then

0 ≤ β < β∗1 : stable steady state
β = β∗1 : period doubling bifurcation
β∗1 ≤ β < β∗2 : stable 2-cycle
β = β∗2 : secondary period doubling bifurcations
β∗2 < β∗ < β∗3 : two co-existing stable 4-cycles
β > β∗3 : complicated chaotic dynamics, strange attractors
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

Rational versus naive: Rational Route to Randomness
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

Rational versus naive: time series + attractors
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

Rational versus naive: unstable manifolds
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

Rational versus naive: two co-existing stable 4-cycles
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Evolutinoary Selection and Reinforcement Learning

Basins of Attraction of two coexisting stable 4-cycles
fractal basin boundaries
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Fundamentalists versus naive

Discrete choice model, with asynchronous updating

nht = (1− δ)e
βUh,t−1

Zt−1
+ δnh,t−1,

where Zt−1 =
∑

eβUh,t−1 is normalization factor,
Uh,t−1 past strategy performance, e.g. (weighted average) past profits

δ is probability of not updating
β is the intensity of choice.
β = 0: all types equal weight (in long run)
β =∞: fraction 1− δ switches to best predictor
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Fundamentalists versus naive

Cobweb Model with Heterogeneous Beliefs
market clearing a − dpt = n1tspe

1t + n2tspe
2t(+εt)

n1t and n2t = 1− n1t fractions of two types
forecasting rules:
rational/fundamentalists/contrarians/SAC-learning at cost C > 0
versus free naive

pe
1t = pt rational

= p∗ fundamentalist

= p∗ + β(pt−1 − p∗) contrarian,−1 < β < 0

= αt−1 + βt−1(pt−1 − αt−1) SAC-learning

pe
2t = pt−1 naive
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Fundamentalists versus naive

Fundamentalists versus naive

(xt , n1t) phase space price deviations fraction fundamentalists

sample average sample autocorrelation
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Fundamentalists versus naive

Fundamentalists versus naive (continued)

chaotic price fluctuations (when intensity of choice large)
sample average of prices close to fundamental price
strong negative first order autocorrelation in prices (βt → −0.85)

Question: will boundedly rational agents detect negative AC?
Replace fundamentalists by contrarians
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Contrarians versus naive

Contrarians versus naive
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Contrarians versus naive

Contrarians versus naive (continued)

chaotic price fluctuations (when intensity of choice large)
sample average of prices close to fundamental price
less strong negative first order autocorrelation in prices (βt → −0.57,
with β = −0.85)

Question: can boundedly rational agents learn the correct negative AC?
Replace contrarians by SAC-learning
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Cobweb Model with Heterogeneous Beliefs (Chapter 5) Contrarians versus naive

Contrarians versus naive: homoclinic intersections
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Behavioral Sample Auto-Correlation (SAC) Learning
Hommes and Sorger, 1998

simple AR1 forecasting rule

pe
t = αt−1 + βt−1(pt−1 − αt−1)

sample average after t periods:

αt−1 =
1
t

t−1∑
i=0

pi , t ≥ 2

the sample autocorrelation coefficient at the first lag, after t periods:

βt−1 =

∑t−2
i=0 (pi − αt−1)(pi+1 − αt−1)∑t−1

i=0 (pi − αt−1)2 , t ≥ 2
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SAC-learning versus naive

agents learn to be contrarians, with first order AC βt → −0.62
part of the (linear) structure has been “arbitraged away”

fundamentalists: correct sample average
contrarians: correct SAV + SAC

Note: adding more rules removes autocorrelations as in experiments
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Summary Nonlinear Cobweb Model

in nonlinear cobweb model with monotonic demand and supply,
simple expectation rules may generate chaos in prices and errors;
simple rules in a nonlinear world may be behaviorally rational
heterogeneous expectations driven by recent performance may lead
to homoclinic bifurcations and chaos
simple rules survive evolutionary competition, especially when
more sophisticated rules are costly
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Questions?

Read the book
or ask them now!!
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