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The 1-D quadratic map

Quadratic Map

Example of one-dimensional system:

xt+1 = fλ(xt) = λxt(1− xt) (2.2)

1 initial state x0 ∈ [0, 1]

2 parameter λ, 0 ≤ λ ≤ 4.
3 Problem: what do the orbits look like?
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The 1-D quadratic map

Convergence to a steady state
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Figure: λ = 2.9 and x0 = 0.1
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The 1-D quadratic map

Convergence to a 2-cycle
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Figure: λ = 3.3 and x0 = 0.1
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The 1-D quadratic map

Convergence to a 4-cycle
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Figure: λ = 3.5 and x0 = 0.1

Cars Hommes (CeNDEF, UvA) Complex Systems CEF 2013, Vancouver 6 / 50



The 1-D quadratic map

Convergence to a 3-cycle
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Figure: λ = 3.83 and x0 = 0.1
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The 1-D quadratic map

Sensitive dependence on initial conditions
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Figure: λ = 4 and x0 = 0.1 (left) and (f) λ = 4 and x0 = 0.1001 (right).
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The 1-D quadratic map

Periodic Orbits and Stability

A point x is called a periodic point with period k if

f k(x) = x and f i (x) 6= x , 0 < i < k.

(Note: periodic point with period k is fixed point of k-th iterate f k)

{x1, x2, ..., xk} = {x1, f (x1), f 2(x1), ...f k−1(x1)} periodic orbit or k-cycle.

If xi stable fixed point of f k , then {x1, x2, ..., xk} stable periodic orbit;
from the chain rule we have

(f k)′(xi ) = (f k)′(x1) = f ′(f k−1(x1)) · f ′(f k−2(x1))....f ′(f (x1)) · f ′(x1)

=
k−1∏
i=0

f ′(f i (x1)).

(Note: (f k)′(xj) is the product of derivatives along the orbit)
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The 1-D quadratic map

Aperiodic Point

A point x is called an aperiodic point if
1 the orbit of x is bounded,
2 the orbit of x is not periodic, and
3 the orbit of x does not converge to a periodic orbit
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Bifurcations

Bifurcation diagram of the quadratic map
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Figure: Bifurcation diagram of the quadratic map.
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Bifurcations

Period doubling bifurcation at λ = 3
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Figure: Graphs of the second iterate f 2 for three different λ-values close to the
period-doubling bifurcation at λ = 3.
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Bifurcations

Tangent bifurcation for xt+1 = x 2
t + c at c = 1/4
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Figure: Tangent bifurcation for xt+1 = x2
t + c at c = 1/4.
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Bifurcations

Creation of a 3-cycle by tangent bifurcation
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Figure: Creation of 3-cycle by tangent bifurcation at λ ≈ 3.8283.
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Bifurcations

Tangent bifurcation of a 3-cycle in the quadratic map

Proposition 2.1
For λ = λ∗ ≈ 3.8283 fλ has a tangent bifurcation in which two 3-cycles
are created, one stable and one unstable. Equivalently, at λ = λ∗ the third
iterate f 3

λ has a tangent bifurcation in which simultaneously 6 steady
states are created, 3 stable and 3 unstable. We have
(1) for λ < λ∗ : fλ has no 3-cycle,
(2) for λ = λ∗ : fλ has one 3-cycle {x1, x2, x3}, and

(
f 3)′ (xi ) = +1, for

1 ≤ i ≤ 3,
(3) for λ > λ∗ (and λ close to λ∗): fλ has two 3-cycles, one stable and
one unstable.
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Bifurcations

Pitchfork Bifurcation

Example: symmetric S-shaped map

xt+1 =
eλxt − e−λxt

eλxt + e−λxt

0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ

Cars Hommes (CeNDEF, UvA) Complex Systems CEF 2013, Vancouver 16 / 50



Chaos

Definition of topoligical chaos

The dynamics of a difference equation xt+1 = f (xt) is called
(topologically) chaotic if the following three properties are satisfied:

1 There exists an infinite set P of (unstable) periodic points with
different periods.

2 There exists an uncountable set S of aperiodic points (i.e. poinst
whose orbits are bounded, not periodic and not converging to a
periodic orbit).

3 f has sensitive dependence on initial conditions w.r.t. Λ = P ∪ S, that
is, there exists a positive distance C such that for all initial states
x0 ∈ Λ and any ε-neighbourhood U of x0, there exists an initial state
y0 ∈ Λ ∩ U and a time T > 0 such that the distance
d(xT , yT ) = d(f T (x0), f T (y0)) > C .
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Chaos

Example of Chaos: quadratic map for λ = 4
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Figure: Graphs of (a) f4(x) = 4x(1− x), (b) f 2
4 , (c) f 3

4 and (d) f 10
4 .
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Chaos

Properties of quadratic map f4

It can be shown that for any n, the graph of f n
4 has the following

properties:
1 f n

4 has 2n−1 maxima equal to 1 and 2n−1 + 1 minima equal to 0
(including minima at x = 0 and x = 1).

2 f n
4 ‘oscillates’ 2n−1 times on the interval [0, 1].

3 the map f n
4 has 2n fixed points.

4 for any interval I of arbitrarily small length ε, there exists an N > 0
such that I contains points x , y with f N

4 (x) = 0 and f N
4 (y) = 1.
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Chaos

Period three implies chaos

Theorem 1
("Period 3 implies Chaos", Li & Yorke [1975]). Let xt+1 = f (xt) be a 1-D
difference equation with f a continuous map. If there exist a point x0 such
that f 3(x0) ≤ x0 < f (x0) < f 2(x0) (or with > instead of <) then the
dynamics is topologically chaotic
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Chaos

Topological Chaos with Noise
Quadratic map with small noise

xt+1 = 3.83xt(1− xt)
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Chaos

Definition of true chaos

The dynamics of a difference equation xt+1 = f (xt) is called ‘truly’
chaotic if there exists a set Λ of positive Lebesgue measure, such that f
has sensitive dependence on initial conditions w.r.t. Λ, that is, there exists
a positive distance C such that for all initial states x0 ∈ Λ and any
ε-neighbourhood U of x0, there exists an initial state y0 ∈ Λ ∩ U and a
time T > 0 such that the distance d(xT , yT ) = d(f T (x0), f T (y0)) > C .
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Chaos

Lyapunov exponents

The Lyapunov exponent is defined as
λ(x0) = limn→∞

1
n
∑n−1

i=0 ln(| f ′(f i (x0)) |).
Derivation:

| f n(x0 + δ)− f n(x0) | ≈ | (f n)′(x0)δ | = enλ(x0) | δ |

⇔ enλ(x0) =| (f n)′(x0) |⇒ λ(x0) =
1
n ln(| (f n)′(x0) |).

The Lyapunov exponent measures the average rate of divergence of
nearby initial states. It is the average of the logs of the absolute
values of the derivative along the orbit.
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Chaos

Lyapunov exponent plot of the quadratic map
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Figure: Lyapunov exponent L as a function of the parameter λ.
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Chaos

The asymmetric tent map

The asymmetric tent map Tβ is the continuous, piecewise linear map
Tβ : [0, 1]→ [0, 1] defined as

Tβ(x) =


2

1+β x , 0 ≤ x ≤ (β+1)
2

2
1−β (1− x), β+1

2 < x ≤ 1,
(1)

where the parameter −1 < β < +1.
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Chaos

Graph of asymmetric tent maps
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Figure: Graphs of the asymmetric tent map: (a) β = −0.7, (b) β = 0 and (c)
β = 0.7
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Chaos

The properties of the asymmetric tent map

The piecewise linear difference equation xt+1 = Tβ(xt) has the following
properties:

1 For any integer j ≥ 1, Tβ has a periodic point of period j ; all periodic
orbits are unstable.

2 For Lebesgue almost all initial states x0 ∈ [0, 1], the time path
{xt}∞t=0 is chaotic and dense in the interval [0, 1].

3 For Lebesgue almost all initial states x0 ∈ [0, 1], the sample average
of the (chaotic) time path is x̄ = limT→∞

1
T+1

∑T
t=0 xt = 1/2.

4 For Lebesgue almost all initial states x0 ∈ [0, 1], the sample
autocorrelation coefficient at lag j is ρj = βj .
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The 2-D Hénon map

Two-dimensional (2-D) systems

(xt+1, yt+1) = Fλ(xt , yt),

Fλ nonlinear 2-D map and λ is a parameter.
The orbit with initial state (x0, y0) is the set

{(x0, y0), (x1, y1), (x2, y2), .....} = {(x0, y0),Fλ(x0, y0),F 2
λ (x0, y0), .....}.

Problem: what do these orbits look like and how does it depend on initial
states and parameters?
Example: Hénon map:

xt+1 = 1− ax2
t + yt

yt+1 = bxt ,

where a and b are parameters.
(special case b = 0 yields 1-D quadratic map)
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The 2-D Hénon map

Strange attractor of the Hénon map

Figure: The strange attractor for the Hénon map Ha,b with a = 1.4 and b = 0.3.
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The 2-D Hénon map

Chaotic time-series and SDIC
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Figure: Chaotic time series and sensitive dependence for the Hénon map Ha,b
with a = 1.4 and b = 0.3. (a) (x0, y0) = (0, 0) and (b) (x0, y0) = (0.001, 0).

Cars Hommes (CeNDEF, UvA) Complex Systems CEF 2013, Vancouver 30 / 50



The 2-D Hénon map

Attractor and Strange Attractor

An attractor of a K -dimensional system Xt+1 = F (Xt) is a compact set A
with the following properties:

1 The set A is invariant, i.e. F (A) ⊂ A.
2 There exists an open neighborhood U of A (i.e. A ⊂ U), such that all

initial states X0 converge to the attractor A, i.e. for all X0 ∈ U,
limn→∞ dist(F n(X0),A) = 0.

3 There exists an initial state X0 ∈ A for which the orbit is dense in A.
An attractor A is called a strange attractor of the N-dimensional
dynamical system xt+1 = F (xt), if the map F has sensitive dependence
w.r.t. the set of initial states converging to A.
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Hopf bifurcation

The delayed logistic map

Delayed logistic map: Nt+1 = aNt(1− Nt−1).

Equivalently (xt = Nt and yt = Nt−1):

xt+1 = yt
yt+1 = ayt(1− xt).

steady states

(x1, y1) = (0, 0) and (x2, y2) = (
a − 1
a ,

a − 1
a ).

The eigenvalues of the system are λ1 = 1
2 −

1
2
√
5− 4a and

λ2 = 1
2 + 1

2
√
5− 4a.
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Hopf bifurcation

Dynamical properties of the delayed logistic map

The eigenvalues λ1 and λ2 of JFa(a−1
a , a−1

a ) satisfy the following
properties:

0 ≤ a < 1: real eigenvalues with −1 < λ1 < 1 < λ2, so (a−1
a , a−1

a ) is
a saddle.
1 < a < 5

4 : real eigenvalues with 0 < λ1 < λ2 < 1, so (a−1
a , a−1

a ) is
attracting (stable node).
5
4 < a < 2: complex eigenvalues with λ1λ2 = a − 1 < 1, so
(a−1

a , a−1
a ) is a stable focus.

a > 2: complex eigenvalues with λ1λ2 = a − 1 > 1, so (a−1
a , a−1

a ) is
an unstable focus.
Hopf bifurcation (or Neimark-Sacker) for a = 2
complex eigenvalues on the unit circle
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Hopf bifurcation

Attractors delayed logistic map
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Figure: (a) Attractors for the logistic delayed equation for different a-values after
the Hopf bifurcation.
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Hopf bifurcation

Strange attractor of the delayed logisitic map

Figure: (b-e) The strange attractor for a = 2.27 and some enlargements.
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Hopf bifurcation

Time series for the logistic delayed equation
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Figure: Time series for for different values of the parameter a.
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Hopf bifurcation

Bifurcation diagrams for logistic delayed equation
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Figure: Hopf-bifurcation and breaking of an invariant circle bifurcation route to
chaos
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Hopf bifurcation

Types of Local Bifurcations

1 λ = +1:
saddle-node bifurcation: two new steady states, a saddle and a node;
pitchfork bifurcation: one steady state becomes unstable and two new
stable steady states;
transcritical bifurcation; two steady states collide and exchange
stability;

2 λ = −1:
period-doubling bifurcation: steady state loses stability and new stable
2-cycle;

3 a pair of complex eigenvalues λ1 and λ2 on the unit circle, i.e.
|λ1λ2| = 1 :

Hopf bifurcation: steady state becomes an unstable focus and an
attracting invariant circle emerges with (quasi-)periodic dynamics
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Homoclinic orbits

Local (un)stable manifolds

Let p be a fixed point of the 2-D map F .
The local stable manifold and local unstable manifold of p are defined as

W s
loc(p) = {x ∈ U| lim

n→∞
F n(x) = p} (2)

W u
loc(p) = {x ∈ U| lim

n→−∞
F n(x) = p} (3)

where U is some small neighbourhood of p.
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Homoclinic orbits

Global(un)stable manifolds

The global stable manifold and the global unstable manifold are now
defined as

W s(p) =
∞⋃

n=0
F−n(W s

loc) (4)

W u(p) =
∞⋃

n=0
F n(W u

loc). (5)
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Homoclinic orbits

Homoclonic point

A point q is called a homoclinic point if q 6= p and q is an intersection
point of the stable and unstable manifolds of the saddle point p, that is,
q ∈W s(p)

⋂
W u(p).
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Homoclinic orbits

Henry Poincaré, ca. 1890: motion in the three body
problem is unpredictable and chaotic

2-D map of suitable plane section has homoclinic orbit
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Homoclinic orbits

Henry Poincaré, ca. 1890: homoclinic orbit
implies sensitive dependence on initial conditions
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Homoclinic orbits

Homoclonic bifurcation

We say that Fα has a homoclinic bifurcation, associated to the saddle
point pα, at α = α0, if

1 for α < α0, W s(pα) and W u(pα) have no intersection point q 6= p;
2 for α = α0, W s(pα) and W u(pα) have a point of homoclinic

tangency;
3 for α > α0, W s(pα) and W u(pα) have a transversal homoclinic

intersection point.
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Homoclinic orbits

Homoclonic bifurcation
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Lyapunov Exponents

Lyapunov exponents

Consider a dynamic model xt+1 = F (xt), where F is an n-dimensional
map.
Let x0 be an intial state vector and δ an initial perturbation vector.
After n time periods, the separation between the two initial state
vectors x0 and x0 + δ is approximately

‖ F n(x0 + δ)− F n(x0) ‖ ≈ ‖ (Dx0F n)(δ) ‖ .

The Lyapunov exponent is a measure of the average exponential rate
of divergence:

λ(x0, δ) = lim
n→∞

1
n ln(‖ (Dx0F n)(δ) ‖).
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Lyapunov Exponents

Lyapunov exponents λ1 and λ2
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Figure: Lyapunov exponents λ1 and λ2
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Implications Nonlinear Dynamics for Economics

Henry Poincaré to Léon Walras (30 September, 1901):

“You regard men as infinitely selfish and infinitely faresighted.
The first hypothesis can perhaps be admitted as a first approximation,
but the second should perhaps be regarded with some reservations”

nonlinear complex systems: limits to predictability and rationality
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Implications Nonlinear Dynamics for Economics

Léon Walras to Henry Poincaré (3 October, 1901):

In reality, agents are neither infinitely
selfish nor infinitely clairvoyant.
Theory should indicate these frictions
carefully ...
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Implications Nonlinear Dynamics for Economics

Implications Nonlinear Dynamics for Economics

The fact that (simple) nonlinear systems exhibit complex dynamics
calls for reservations about rational behavior, in particular rational
expectations;
In a nonlinear world, simple heuristics that work reasonably well may
be the best boundedly rational agents can achieve
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