## Complex Systems Workshop Lecture I: Non-linear Dynamics, Chaos, Bifurcation & Strange Attractors

Cars Hommes

CeNDEF, UvA

CEF 2013, July 9, Vancouver

#### Outline

- The 1-D quadratic map
- Bifurcations
- Chaos
- The 2-D Hénon map
- 6 Hopf bifurcation
- 6 Homoclinic orbits
- Lyapunov Exponents
- 8 Implications Nonlinear Dynamics for Economics

### Quadratic Map

Example of one-dimensional system:

$$x_{t+1} = f_{\lambda(x_t)} = \lambda x_t (1 - x_t)$$
 (2.2)

- initial state  $x_0 \in [0,1]$
- **2** parameter  $\lambda$ ,  $0 \le \lambda \le 4$ .
- Problem: what do the orbits look like?

### Convergence to a steady state



Figure:  $\lambda = 2.9$  and  $x_0 = 0.1$ 



## Convergence to a 2-cycle



Figure:  $\lambda = 3.3$  and  $x_0 = 0.1$ 



## Convergence to a 4-cycle



Figure:  $\lambda = 3.5$  and  $x_0 = 0.1$ 



## Convergence to a 3-cycle



Figure:  $\lambda = 3.83$  and  $x_0 = 0.1$ 



#### Sensitive dependence on initial conditions



Figure:  $\lambda = 4$  and  $x_0 = 0.1$  (left) and (f)  $\lambda = 4$  and  $x_0 = 0.1001$  (right).

#### Periodic Orbits and Stability

A point x is called a **periodic point with period k** if

$$f^k(x) = x$$
 and  $f^i(x) \neq x$ ,  $0 < i < k$ .

(Note: periodic point with period k is fixed point of k-th iterate  $f^k$ )

$$\{x_1, x_2, ..., x_k\} = \{x_1, f(x_1), f^2(x_1), ..., f^{k-1}(x_1)\}$$
 periodic orbit or k-cycle.

If  $x_i$  stable fixed point of  $f^k$ , then  $\{x_1, x_2, ..., x_k\}$  stable periodic orbit; from the chain rule we have

$$(f^{k})'(x_{i}) = (f^{k})'(x_{1}) = f'(f^{k-1}(x_{1})) \cdot f'(f^{k-2}(x_{1})) \dots f'(f(x_{1})) \cdot f'(x_{1})$$
$$= \prod_{i=0}^{k-1} f'(f^{i}(x_{1})).$$

(Note:  $(f^k)'(x_j)$  is the product of derivatives along the orbit)

#### Aperiodic Point

A point x is called an **aperiodic point** if

- the orbit of x is bounded,
- the orbit of x is not periodic, and
- 1 the orbit of x does not converge to a periodic orbit

## Bifurcation diagram of the quadratic map



Figure: Bifurcation diagram of the quadratic map.



#### Period doubling bifurcation at $\lambda = 3$



Figure: Graphs of the second iterate  $f^2$  for three different  $\lambda$ -values close to the period-doubling bifurcation at  $\lambda = 3$ .



# Tangent bifurcation for $x_{t+1} = x_t^2 + c$ at c = 1/4



Figure: Tangent bifurcation for  $x_{t+1} = x_t^2 + c$  at c = 1/4.



### Creation of a 3-cycle by tangent bifurcation



Figure: Creation of 3-cycle by tangent bifurcation at  $\lambda \approx 3.8283$ .



#### Tangent bifurcation of a 3-cycle in the quadratic map

#### Proposition 2.1

For  $\lambda=\lambda^*\approx 3.8283$   $f_\lambda$  has a tangent bifurcation in which two 3-cycles are created, one stable and one unstable. Equivalently, at  $\lambda=\lambda^*$  the third iterate  $f_\lambda^3$  has a tangent bifurcation in which simultaneously 6 steady states are created, 3 stable and 3 unstable. We have

- (1) for  $\lambda < \lambda^*$ :  $f_{\lambda}$  has no 3-cycle,
- (2) for  $\lambda = \lambda^*$ :  $f_{\lambda}$  has one 3-cycle  $\{x_1, x_2, x_3\}$ , and  $(f^3)'(x_i) = +1$ , for  $1 \le i \le 3$ ,
- (3) for  $\lambda > \lambda^*$  (and  $\lambda$  close to  $\lambda^*$ ):  $f_{\lambda}$  has two 3-cycles, one stable and one unstable.

#### Pitchfork Bifurcation

#### **Example:** symmetric S-shaped map

$$x_{t+1} = \frac{e^{\lambda x_t} - e^{-\lambda x_t}}{e^{\lambda x_t} + e^{-\lambda x_t}}$$



#### Definition of topoligical chaos

The dynamics of a difference equation  $x_{t+1} = f(x_t)$  is called **(topologically) chaotic** if the following three properties are satisfied:

- There exists an infinite set *P* of (unstable) periodic points with different periods.
- There exists an uncountable set S of aperiodic points (i.e. poinst whose orbits are bounded, not periodic and not converging to a periodic orbit).
- **3** *f* has sensitive dependence on initial conditions w.r.t. Λ = P ∪ S, that is, there exists a positive distance C such that for all initial states  $x_0 ∈ Λ$  and any ε-neighbourhood U of  $x_0$ , there exists an initial state  $y_0 ∈ Λ ∩ U$  and a time T > 0 such that the distance  $d(x_T, y_T) = d(f^T(x_0), f^T(y_0)) > C$ .



## Example of Chaos: quadratic map for $\lambda = 4$



Figure: Graphs of (a)  $f_4(x) = 4x(1-x)$ , (b)  $f_4^2$ , (c)  $f_4^3$  and (d)  $f_4^{10}$ .



#### Properties of quadratic map $f_4$

It can be shown that for any n, the graph of  $f_4^n$  has the following properties:

- $f_4^n$  has  $2^{n-1}$  maxima equal to 1 and  $2^{n-1} + 1$  minima equal to 0 (including minima at x = 0 and x = 1).
- 2  $f_4^n$  'oscillates'  $2^{n-1}$  times on the interval [0,1].
- **1** the map  $f_4^n$  has  $2^n$  fixed points.
- **9** for any interval I of arbitrarily small length  $\varepsilon$ , there exists an N > 0 such that I contains points x, y with  $f_4^N(x) = 0$  and  $f_4^N(y) = 1$ .

#### Period three implies chaos

#### Theorem 1

("Period 3 implies Chaos", Li & Yorke [1975]). Let  $x_{t+1} = f(x_t)$  be a 1-D difference equation with f a continuous map. If there exist a point  $x_0$  such that  $f^3(x_0) \le x_0 < f(x_0) < f^2(x_0)$  (or with > instead of <) then the dynamics is topologically chaotic



#### Topological Chaos with Noise

#### Quadratic map with small noise

$$x_{t+1} = 3.83x_t(1-x_t)$$



#### Definition of true chaos

The dynamics of a difference equation  $x_{t+1} = f(x_t)$  is called **'truly' chaotic** if there exists a set  $\Lambda$  of positive Lebesgue measure, such that f has sensitive dependence on initial conditions w.r.t.  $\Lambda$ , that is, there exists a positive distance C such that for all initial states  $x_0 \in \Lambda$  and any  $\varepsilon$ -neighbourhood U of  $x_0$ , there exists an initial state  $y_0 \in \Lambda \cap U$  and a time T > 0 such that the distance  $d(x_T, y_T) = d(f^T(x_0), f^T(y_0)) > C$ .

#### Lyapunov exponents

- The **Lyapunov exponent** is defined as  $\lambda(x_0) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \ln(|f'(f^i(x_0))|).$
- Derivation:

$$|f^{n}(x_{0} + \delta) - f^{n}(x_{0})| \approx |(f^{n})'(x_{0})\delta| = e^{n\lambda(x_{0})} |\delta|$$
  
 $\Leftrightarrow e^{n\lambda(x_{0})} = |(f^{n})'(x_{0})| \Rightarrow \lambda(x_{0}) = \frac{1}{n} \ln(|(f^{n})'(x_{0})|).$ 

• The Lyapunov exponent measures the average rate of divergence of nearby initial states. It is the average of the logs of the absolute values of the derivative along the orbit.



#### Lyapunov exponent plot of the quadratic map



Figure: Lyapunov exponent L as a function of the parameter  $\lambda$ .

#### The asymmetric tent map

The asymmetric tent map  $T_{\beta}$  is the continuous, piecewise linear map  $T_{\beta}:[0,1]\to[0,1]$  defined as

$$T_{\beta}(x) = \begin{cases} \frac{2}{1+\beta}x, & 0 \le x \le \frac{(\beta+1)}{2} \\ \frac{2}{1-\beta}(1-x), & \frac{\beta+1}{2} < x \le 1, \end{cases}$$
 (1)

where the parameter  $-1 < \beta < +1$ .

#### Graph of asymmetric tent maps



Figure: Graphs of the asymmetric tent map: (a)  $\beta=-0.7$ , (b)  $\beta=0$  and (c)  $\beta=0.7$ 

#### The properties of the asymmetric tent map

The piecewise linear difference equation  $x_{t+1} = T_{\beta}(x_t)$  has the following properties:

- For any integer  $j \ge 1$ ,  $T_{\beta}$  has a periodic point of period j; all periodic orbits are unstable.
- ② For Lebesgue almost all initial states  $x_0 \in [0, 1]$ , the time path  $\{x_t\}_{t=0}^{\infty}$  is chaotic and dense in the interval [0, 1].
- **③** For Lebesgue almost all initial states  $x_0 \in [0,1]$ , the sample average of the (chaotic) time path is  $\bar{x} = \lim_{T \to \infty} \frac{1}{T+1} \sum_{t=0}^{T} x_t = 1/2$ .
- **4** For Lebesgue almost all initial states  $x_0 \in [0, 1]$ , the sample autocorrelation coefficient at lag j is  $\rho_i = \beta^j$ .

### Two-dimensional (2-D) systems

$$(x_{t+1}, y_{t+1}) = F_{\lambda}(x_t, y_t),$$

 $F_{\lambda}$  nonlinear 2-D map and  $\lambda$  is a parameter.

The *orbit* with *initial state*  $(x_0, y_0)$  is the set

$$\{(x_0, y_0), (x_1, y_1), (x_2, y_2), \ldots\} = \{(x_0, y_0), F_{\lambda}(x_0, y_0), F_{\lambda}^2(x_0, y_0), \ldots\}.$$

**Problem**: what do these orbits look like and how does it depend on initial states and parameters?

Example: Hénon map:

$$x_{t+1} = 1 - ax_t^2 + y_t$$
  
 $y_{t+1} = bx_t$ ,

where a and b are parameters.

(special case b = 0 yields 1-D quadratic map)



### Strange attractor of the Hénon map



Figure: The strange attractor for the Hénon map  $H_{a,b}$  with a=1.4 and b=0.3.

#### Chaotic time-series and SDIC



Figure: Chaotic time series and sensitive dependence for the Hénon map  $H_{a,b}$  with a=1.4 and b=0.3. (a)  $(x_0,y_0)=(0,0)$  and (b)  $(x_0,y_0)=(0.001,0)$ .

#### Attractor and Strange Attractor

An **attractor** of a K-dimensional system  $X_{t+1} = F(X_t)$  is a compact set A with the following properties:

- **1** The set A is invariant, i.e.  $F(A) \subset A$ .
- ② There exists an open neighborhood U of A (i.e.  $A \subset U$ ), such that all initial states  $X_0$  converge to the attractor A, i.e. for all  $X_0 \in U$ ,  $\lim_{n\to\infty} dist(F^n(X_0), A) = 0$ .
- **3** There exists an initial state  $X_0 \in A$  for which the orbit is dense in A.

An attractor A is called a **strange attractor** of the *N*-dimensional dynamical system  $x_{t+1} = F(x_t)$ , if the map F has sensitive dependence w.r.t. the set of initial states converging to A.

#### The delayed logistic map

- Delayed logistic map:  $N_{t+1} = aN_t(1 N_{t-1})$ .
- Equivalently  $(x_t = N_t \text{ and } y_t = N_{t-1})$ :

$$\begin{array}{rcl}
 x_{t+1} & = & y_t \\
 y_{t+1} & = & ay_t(1-x_t).
 \end{array}$$

steady states

$$(x_1, y_1) = (0, 0)$$
 and  $(x_2, y_2) = (\frac{a-1}{a}, \frac{a-1}{a}).$ 

• The eigenvalues of the system are  $\lambda_1 = \frac{1}{2} - \frac{1}{2}\sqrt{5-4a}$  and  $\lambda_2 = \frac{1}{2} + \frac{1}{2}\sqrt{5-4a}$ .



#### Dynamical properties of the delayed logistic map

The eigenvalues  $\lambda_1$  and  $\lambda_2$  of  $JF_a(\frac{a-1}{a},\frac{a-1}{a})$  satisfy the following properties:

- $0 \le a < 1$ : real eigenvalues with  $-1 < \lambda_1 < 1 < \lambda_2$ , so  $(\frac{a-1}{a}, \frac{a-1}{a})$  is a **saddle**.
- $1 < a < \frac{5}{4}$ : real eigenvalues with  $0 < \lambda_1 < \lambda_2 < 1$ , so  $(\frac{a-1}{a}, \frac{a-1}{a})$  is attracting (**stable node**).
- $\frac{5}{4} < a < 2$ : complex eigenvalues with  $\lambda_1 \lambda_2 = a 1 < 1$ , so  $\left(\frac{a-1}{a}, \frac{a-1}{a}\right)$  is a **stable focus**.
- a > 2: complex eigenvalues with  $\lambda_1 \lambda_2 = a 1 > 1$ , so  $(\frac{a-1}{a}, \frac{a-1}{a})$  is an **unstable focus**.
- Hopf bifurcation (or Neimark-Sacker) for a = 2 complex eigenvalues on the unit circle



#### Attractors delayed logistic map



Figure: (a) Attractors for the logistic delayed equation for different a-values after the Hopf bifurcation.

#### Strange attractor of the delayed logisitic map



Figure: (b-e) The strange attractor for a = 2.27 and some enlargements.

#### Time series for the logistic delayed equation



Figure: Time series for for different values of the parameter a.



## Bifurcation diagrams for logistic delayed equation



Figure: Hopf-bifurcation and breaking of an invariant circle bifurcation route to chaos

## Types of Local Bifurcations

- **1**  $\lambda = +1$ :
  - saddle-node bifurcation: two new steady states, a saddle and a node;
  - pitchfork bifurcation: one steady state becomes unstable and two new stable steady states;
  - transcritical bifurcation; two steady states collide and exchange stability;
- **2**  $\lambda = -1$ :
  - period-doubling bifurcation: steady state loses stability and new stable 2-cycle;
- ① a pair of complex eigenvalues  $\lambda_1$  and  $\lambda_2$  on the unit circle, i.e.  $|\lambda_1\lambda_2|=1$  :
  - Hopf bifurcation: steady state becomes an unstable focus and an attracting invariant circle emerges with (quasi-)periodic dynamics



## Local (un)stable manifolds

Let p be a fixed point of the 2-D map F.

The local stable manifold and local unstable manifold of p are defined as

$$W_{loc}^{s}(p) = \{ x \in U | \lim_{n \to \infty} F^{n}(x) = p \}$$
 (2)

$$W_{loc}^{u}(p) = \{x \in U | \lim_{n \to -\infty} F^{n}(x) = p\}$$
(3)

where U is some small neighbourhood of p.



# Global(un)stable manifolds

The global stable manifold and the global unstable manifold are now defined as

$$W^{s}(p) = \bigcup_{n=0}^{\infty} F^{-n}(W_{loc}^{s})$$

$$\tag{4}$$

$$W^{u}(p) = \bigcup_{n=0}^{\infty} F^{n}(W_{loc}^{u}). \tag{5}$$

## Homoclonic point



A point q is called a **homoclinic point** if  $q \neq p$  and q is an intersection point of the stable and unstable manifolds of the saddle point p, that is,  $q \in W^s(p) \cap W^u(p)$ .

# Henry Poincaré, ca. 1890: motion in the **three body problem** is unpredictable and chaotic



2-D map of suitable plane section has homoclinic orbit

# Henry Poincaré, ca. 1890: homoclinic orbit implies sensitive dependence on initial conditions



#### Homoclonic bifurcation

We say that  $F_{\alpha}$  has a **homoclinic bifurcation**, associated to the saddle point  $p_{\alpha}$ , at  $\alpha = \alpha_0$ , if

- for  $\alpha < \alpha_0$ ,  $W^s(p_\alpha)$  and  $W^u(p_\alpha)$  have no intersection point  $q \neq p$ ;
- ② for  $\alpha = \alpha_0$ ,  $W^s(p_\alpha)$  and  $W^u(p_\alpha)$  have a point of homoclinic tangency;
- **3** for  $\alpha > \alpha_0$ ,  $W^s(p_\alpha)$  and  $W^u(p_\alpha)$  have a transversal homoclinic intersection point.

#### Homoclonic bifurcation



### Lyapunov exponents

- Consider a dynamic model  $x_{t+1} = F(x_t)$ , where F is an n-dimensional map.
- Let  $x_0$  be an intial state vector and  $\delta$  an initial perturbation vector.
- After n time periods, the separation between the two initial state vectors  $x_0$  and  $x_0 + \delta$  is approximately

$$|| F^{n}(x_{0} + \delta) - F^{n}(x_{0}) || \approx || (D_{x_{0}}F^{n})(\delta) ||$$
.

 The Lyapunov exponent is a measure of the average exponential rate of divergence:

$$\lambda(x_0,\delta) = \lim_{n\to\infty} \frac{1}{n} ln(\parallel (D_{x_0}F^n)(\delta) \parallel).$$



# Lyapunov exponents $\lambda_1$ and $\lambda_2$



Figure: Lyapunov exponents  $\lambda_1$  and  $\lambda_2$ 

# Henry Poincaré to Léon Walras (30 September, 1901):

"You regard men as infinitely selfish and infinitely faresighted.

The first hypothesis can perhaps be admitted as a first approximation, but the second should perhaps be regarded with some reservations"



nonlinear complex systems: limits to predictability and rationality

# Léon Walras to Henry Poincaré (3 October, 1901):



In reality, agents are neither infinitely selfish nor infinitely clairvoyant. Theory should indicate these frictions carefully ...

### Implications Nonlinear Dynamics for Economics

- The fact that (simple) nonlinear systems exhibit complex dynamics calls for reservations about rational behavior, in particular rational expectations;
- In a **nonlinear** world, simple **heuristics** that work reasonably well may be the best **boundedly rational** agents can achieve